3RH1 contactor relays, 4- and 8-pole

Technical specifications

Contactor	Type	3RH1
	Size	S00

Permissible mounting position

The contactors are designed for operation AC and DC operation on a vertical mounting surface.

Upright mounting position
AC operation
(only for 3RH11/3RH12/3RH14)

Special version required
Standard version (for coupling relays and contactor relays with extended operating range 3RH11 22-2K. 40, please ask)

Explanations:
There is positively-driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time.

ZH1/457

Safety rules for control units on power-operated presses in the metal-working industry.
EN 60947-5-1, Appendix L
Low-voltage controlgear, control equipment, and switching elements. Special requirements for positively-driven contacts

SUVA

Accident prevention regulations of the "Schweizer Unfallverhütungsanstalt" (Swiss Institute for Accident Insurance)

Frequency of contact faults $<10^{-8}$, i.e. <1 fault per 100 million operating cycles

Diagram legend:
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

1) Snap-on auxiliary switch blocks: $I_{\mathrm{e}} / \mathrm{DC}-13$ max. 6 A .

3RH, 3TH Contactor Relays

3RH1 contactor relays, 4- and 8-pole

Contactor	Type		3RH11, 3RH12	3RH14
	Size		S00	S00
CSA and UL rated data				
Basic units and auxiliary switch blocks				
- Rated control supply voltage		V AC	Max. 600	
- Rated voltage		\checkmark AC	600	
- Switching capacity			A 600, Q 600	
- Uninterrupted current at 240 V AC		A	10	
General data				
Mechanical endurance	Basic units	Operating cycles	30 million	5 million
	Basic unit with snap-on auxiliary switch block	Operating cycles	10 million	
	Solid-state compatible auxiliary switch block	Operating cycles	5 million	
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)		V	690	
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$		kV	6	
Safe isolation between the coil and the contacts in the basic unit according to EN 60947-1, Appendix N		V	400	
Permissible ambient temperature	During operation During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$	
Degree of protection according to EN 60947-1, Appendix C			IP20, coil assembly IP40	
Touch protection according to EN 50274			Finger-safe	
Shock resistance				
Rectangular pulse Sine pulse	AC/DC operation AC/DC operation	g / ms g / ms	10/5 and 5/10 $15 / 5$ and $8 / 10$	
Conductor cross-sections				
(1 or 2 conductors can be connected)	- Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded - Terminal screws - Tightening torque	als mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) 2 \times(0.75 \ldots 2.5) \text { acc. to IEC } 60947 \text {; max. } 2 \times(1 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5) 2 \times(0.75 \ldots 2.5) \end{aligned}$	
Cage Clamp terminals (1 or 2 conductors can be connected)	Auxiliary conductor and coil termin - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG conductors, solid or stranded	als mm^{2} mm^{2} mm^{2} AWG	$\begin{aligned} & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(24 \ldots 14) \end{aligned}$	

Short-circuit protection

(weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)

- Fuse links, gL/gG operational class
- DIAZED, Type 5SB
A 10
- NEOZED, Type 5SE

10

- Or miniature circuit breakers with C characteristic

A 6 (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)

For corresponding 8WA2 803/8WA2 804 opening tool,
see Catalog LV 1.
An "insulation stop" must be used for conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$, see Catalog LV 1.
Maximum outer diameter of the conductor insulation: 3.6 mm .

3RH, 3TH Contactor Relays

3RH1 contactor relays, 4- and 8-pole

Contactor	Type Size		$\begin{aligned} & \text { 3RH1. } \\ & \text { S00 } \end{aligned}$
Control			
Magnetic coil operating range			
AC operation		at 50 Hz at 60 Hz	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{S} \\ & 0.85 \ldots 1.1 \times U_{S} \end{aligned}$
DC operation		$\begin{aligned} & \text { at }+50^{\circ} \mathrm{C} \\ & \text { at }+60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{S}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{S}} \end{aligned}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{\mathrm{s}}$)			
AC operation, 50 Hz	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 27 / 0.8 \\ & 4.6 / 0.27 \end{aligned}$
AC operation, 60 Hz	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 24 / 0.75 \\ & 3.5 / 0.27 \end{aligned}$
DC operation	Closing = Closed	W	3.2

Permissible residual current of the electronics
(with 0 signal)

for AC operation ${ }^{1)}$	$<3 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$
for DC operation	$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$

Operating times

(Total break time $=$ OFF-delay + Arcing time)
AC operation Values apply with coil in cold state
Closing and at operating temperature for

- ON-delay of NO contact
- OFF-delay of NC contact

Opening

- OFF-delay of NO contact
- ON-delay of NC contact operating range

DC operation

Closing

- ON-delay of NO contact
- OFF-delay of NC contact

Opening

- OFF-delay of NO contact
- ON-delay of NC contact
$0.8 \ldots 1.1 \times U_{\mathrm{S}}$
$1.0 \times U_{\mathrm{S}}$
$3 R H 14$ minimum operating time
$0.8 \ldots 1.1 \times U_{\mathrm{S}}$
$1.0 \times U_{\mathrm{S}}$
$0.8 \ldots 1.1 \times U_{\mathrm{S}}$
$1.0 \times U_{\mathrm{S}}$
$3 R H 14$ minimum operating time
$0.8 \ldots 1.1 \times U_{\mathrm{S}}$
$1.0 \times U_{\mathrm{S}}$

ms	$8 \ldots 35$
ms	$10 \ldots 25$
ms	≥ 35
ms	$6 \ldots 20$
ms	$7 \ldots 20$
ms	$4 \ldots 30$
ms	$5 \ldots 30$
ms	≥ 30
ms	$5 \ldots 30$
ms	$7 \ldots 20$

$0.8 \ldots 1.1 \times U_{S}$
$1.0 \times U_{S}$
3RH14 minimum operating time
ms

3 RH1 mim operating time
$0.8 \ldots 1.1 \times U_{\mathrm{s}}$
$1.0 \times U_{s}$
$0.8 \ldots 1.1 \times U_{s}$
$1.0 \times U_{S}$
3RH14 minimum operating time
ms
m
$0.8 \ldots 1.1 \times U_{\mathrm{s}}$ $1.0 \times U_{s}$

Arcing time

Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U
$Z^{\prime}=Z \cdot I_{\mathrm{e}} / I^{\prime} \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

1) The 3RT19 16-1GA00 additional load module is recommended for higher residual currents, see Catalog LV 1.
2) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attentuated against voltage peaks (noise suppression diode 6 to 10 times;
diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Contactor	Type Size		$\begin{aligned} & \text { 3RH1. } \\ & \text { S00 } \end{aligned}$
Load side			
Rated operational currents I_{e}			
AC-12		A	10
AC-15/AC-14 for rated operational voltage U_{s}	$\begin{array}{r} \hline \text { up to } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$
DC-12 for rated operational voltage U_{S} - 1 conducting path	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A	$\begin{aligned} & 10 \\ & 6 \\ & 3 \\ & 1 \\ & 0.3 \\ & 0.15 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	$\begin{aligned} & A \\ & A \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 4 \\ & 2 \\ & 1.3 \\ & 0.65 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 3.6 \\ & 2.5 \\ & 1.8 \end{aligned}$
DC-13 for rated operational voltage U_{S} - 1 conducting path	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A	$\begin{aligned} & 10^{1)} \\ & 2 \\ & 1 \\ & 0.3 \\ & 0.14 \\ & 0.1 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 3.5 \\ & 1.3 \\ & 0.9 \\ & 0.2 \\ & 0.1 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 4.7 \\ & 3 \\ & 1.2 \\ & 0.5 \\ & 0.26 \\ & \hline \end{aligned}$
Switching frequency z - In operating cycles/h during normal duty for utilization category - No-load switching frequency	$\begin{array}{r} \mathrm{AC}-12 / \mathrm{DC}-12 \\ \mathrm{AC}-15 / \mathrm{AC}-14 \\ \mathrm{DC}-13 \end{array}$	$\begin{aligned} & h^{-1} \\ & h^{-1} \\ & h^{-1} \\ & h^{-1} \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 10000 \end{aligned}$

Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U
$z^{\prime}=z \cdot I_{\mathrm{e}} / I^{\prime} \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

1) Snap-on auxiliary switch blocks: 6 A .
