Technical specifications

Contactor
General data
Permissible mounting position
The contactors are designed for
operation on a vertical mounting
surface

Upright mounting position:

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Contactor	$\begin{aligned} & \text { Type } \\ & \text { Size } \end{aligned}$		$\begin{aligned} & \text { 3RT14 } 46 \\ & \text { S3 } \end{aligned}$
Control			
Magnetic coil operating range		AC/DC	$0.8 \ldots 1.1 \times U_{\text {S }}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{\text {S }}$)			
Standard version, AC operation, 50 Hz	- Closing - P.f.	VA	$\begin{aligned} & 270 \\ & 0.68 \end{aligned}$
	- Closed - P.f.	VA	$\begin{aligned} & 22 \\ & 0.27 \end{aligned}$
Standard version, AC operation, $50 / 60 \mathrm{~Hz}$	- Closing - P.f.	VA	$\begin{aligned} & \text { 298/274 } \\ & 0.7 / 0.62 \end{aligned}$
	- Closed - P.f.	VA	$\begin{aligned} & 27 / 20 \\ & 0.29 / 0.31 \end{aligned}$
For USA and Canada, AC operation, 50 Hz	- Closing - P.f.	VA	$\begin{aligned} & 270 \\ & 0.68 \end{aligned}$
	- Closed - P.f.	VA	$\begin{aligned} & 22 \\ & 0.27 \end{aligned}$
For USA and Canada, AC operation, 60 Hz	- Closing - P.f.	VA	$\begin{aligned} & 300 \\ & 0.52 \end{aligned}$
	- Closed - P.f.	VA	$\begin{aligned} & 21 \\ & 0.29 \end{aligned}$
DC operation	Closing $=$ Closed	W	15
$\begin{aligned} & \text { Operating times for } 0.8 \ldots \mathbf{1 . 1} \times \mathbf{U}_{\mathbf{S}}{ }^{11} \\ & \text { Total break time }=\text { Opening delay }+ \text { Arcing time } \end{aligned}$			
- AC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 17 \ldots 90 \\ & 10 \ldots . .25 \end{aligned}$
- DC operation	Closing delay Opening delay	ms	$\begin{aligned} & 90 \ldots 230 \\ & 14 \ldots 20 \end{aligned}$
- Arcing time		ms	$10 \ldots 15$
Operating times for $1.0 \times \mathbf{U}^{1}{ }^{1)}$			
- AC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 18 \ldots 30 \\ & 11 . . .23 \end{aligned}$
- DC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \ldots 120 \\ & 16 \ldots 20 \end{aligned}$

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Load rating with DC

Utilization category DC-1, switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)

Rated operational currents $I_{\mathrm{e}}\left(\right.$ at $60^{\circ} \mathrm{C}$)

- 1 conducting path
- 2 conducting paths in series

Utilization category DC-3/DC-5

Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

Rated operational currents $\boldsymbol{I}_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$

- 1 conducting path	up to 24 V	A	6
	60 V	A	3
	110 V	A	1.25
	220 V	A	0.35
	440 V	A	0.15
- 2 conducting paths in series	600 V	A	0.1
	up to 24 V	A	130
60 V	A	130	
	110 V	A	130
	220 V	A	1.75
	440 V	A	0.42
	600 V	A	0.27
	up to 24 V	A	130
60 V	A	130	
	110 V	A	130
	220 V	A	4
	440 V	A	0.8
600 V	A	0.45	

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

Contactors without overload relays	No-load switching frequency AC	$1 / \mathrm{h}$	5000
	No-load switching frequency DC	$1 / \mathrm{h}$	1000
Rated operation	According to AC-1 (AC/DC)	$1 / \mathrm{h}$	650

[^0]
3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Contactor	Type Size		$\begin{aligned} & \text { 3RT14 } 46 \\ & \text { S3 } \end{aligned}$
Conductor cross-sections			
Screw terminals (1 or 2 conductors can be connected) Front clamping point connected	Main conductors: With box terminal		
	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 50 \\ & 4 \ldots 50 \end{aligned}$
	- Solid - Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 16 \\ & 4 \ldots 70 \end{aligned}$
	- Ribbon cable conductors (number x width x circumference)	mm	$6 \times 9 \times 0.8$
	- AWG conductors, solid or stranded	AWG	10... 2/0
Rear clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 50 \\ & 10 \ldots 50 \end{aligned}$
	- Solid - Stranded - Ribbon cable conductors (number x width x circumference) - AWG conductors, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 16 \\ & 10 \ldots .70 \end{aligned}$
		mm	$6 \times 9 \times 0.8$
		AWG	10... 2/0
Both clamping points connected	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \text { Max. } 2 \times 35 \\ & \text { Max. } 2 \times 35 \end{aligned}$
	- Solid - Stranded - Ribbon cable conductors (number x width x circumference)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \text { Max. } 2 \times 16 \\ & \text { Max. } 2 \times 50 \end{aligned}$
		mm	$2 \times(6 \times 9 \times 0.8)$
	- AWG conductors, solid or stranded - Terminal screws - Tightening torque	AWG	$2 \times(10 . . .1 / 0)$
		Nm	M6 (hexagon socket, A/F 4) 4 ... 6 (36 ... $53 \mathrm{lb} . \mathrm{in}$)
Connection for drilled copper bars	Max. width ${ }^{1)}$	mm	10
	Main conductors:		
	Without box terminal with cable lugs ${ }^{2)}$		
	- Finely stranded with cable lug - Stranded with cable lug	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 10 \ldots 50^{3)} \\ & 10 \ldots 70^{3)} \end{aligned}$
	- AWG conductors, solid or stranded	AWG	$7 \ldots 1 / 0$
	Auxiliary conductors:		
	- Solid	mm^{2}	$2 \times(0.5 \ldots 1.5) 2 \times(0.75 \ldots 2.5)$ acc. to IEC 60947; max. $2 \times(0.75 \ldots 4)$
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) 2 \times(0.75 \ldots 2.5)$
	- AWG conductors, solid or stranded	AWG	$2 \times(20 \ldots 16) 2 \times(18 \ldots 14) 1 \times 12$
	- Terminal screws - Tightening torque	Nm	$\begin{aligned} & \text { M3 } \\ & 0.8 \text {... } 1.2 \text { (} 7 \ldots 10.3 \mathrm{lb} . \text { in }) \end{aligned}$

1) If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a 3RT19 46-4EA1 terminal cover is needed to comply with the phase clearance.
2) When connecting rails which are larger than $25 \mathrm{~mm}^{2}$, the 3RT19 46-4EA1 cover must be used to keep the phase clearance.
3) Only with crimped cable lugs according to DIN 46234. Cable lug max. 20 mm wide.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Technical specifications

${ }^{1)}$ See conductor cross-sections on pages 3/100, 3/101.
2) See Electromagnetic Compatibility (EMC) on page 3/12.

3-pole, 140 ... 690 A

Main circuit

AC capacity
Utilization category AC-1, switching resistive loads
Rated operational currents I_{e}
at $40^{\circ} \mathrm{C}$ up to $690 \vee \mathrm{~A}$
at $60^{\circ} \mathrm{C}$ up to $690 \vee \mathrm{~A}$

275	400	690
250	380	$650^{1)}$
100	150	250
95	145	245
165	250	430
205	315	535
285	430	740
165	247	410
2×70	240	2×240
120	240	2×240
20	27	55
	138	170
97	37	55
30	75	90
55	90	110
55	132	160
90		

1) 600 A for $3 R T 1476-\mathrm{N}$ contactor.
2) Industrial furnaces and electric heaters with resistance heating, etc. increased power consumption on heating up taken into account).

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Contactor	Type Size		$\begin{aligned} & \text { 3RT14 } 56 \\ & \text { S6 } \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 66 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 76 \\ & \text { S12 } \end{aligned}$
Main circuit					
Load rating with DC					
Utilization category DC-1, switching resistive loads ($L / R \leq 1 \mathrm{~ms}$) Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)					
- 1 conducting path	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & A \\ & A \\ & A \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ 18 \end{array}$	$\begin{array}{r} 380 \\ 380 \\ 33 \end{array}$	$\begin{array}{r} 500 \\ 500 \\ 33 \end{array}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 3.4 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 20 \\ & 3.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 380 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 500 \\ & 4 \\ & 2 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 250 \\ & 11.5 \\ & 4 \end{aligned}$	$\begin{aligned} & 380 \\ & 11 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 500 \\ & 11 \\ & 5.2 \end{aligned}$
Utilization category DC-3/DC-5 Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$) Rated operational current $I_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$					
- 1 conducting path	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 250 \\ & 7.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 380 \\ & 11 \\ & 3 \end{aligned}$	$\begin{aligned} & 500 \\ & 11 \\ & 3 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 0.6 \\ & 0.17 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.18 \\ & 0.125 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.18 \\ & 0.125 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 250 \\ & 1.4 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 380 \\ & 1.4 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 500 \\ & 1.4 \\ & 0.75 \end{aligned}$

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

Contactors without overload relays	No-load switching frequency	h^{-1}	2000
	AC-1	h^{-1}	600
AC-3	h^{-1}	1000	

Dependence of the switching
frequency z ' on the operational
current I^{\prime} and operational voltage U^{\prime} :
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot(400 \mathrm{~V} / U)^{1.5} \cdot 1 / \mathrm{h}$

3-pole, 140 ... 690 A

Contactor	Type Size		$\begin{aligned} & \text { 3RT14 } 56 \\ & \text { S6 } \end{aligned}$
Conductor cross-sections			
Screw terminals	Main conductors: With 3RT19 55-4G box terminal		
Front or rear clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 16 \ldots 70 \\ & 16 \ldots . .70 \end{aligned}$
	- Stranded - Ribbon cable conductors	mm^{2}	$16 . . .70$
	- Ribbon cable conductors (number x width \times circumference)	mm	$3 \times 9 \times 0.8 \ldots 6 \times 15.5 \times 0.8$
	- AWG conductors, solid or stranded	AWG	6 ... 2/0
Both clamping points connected			
	- Finely stranded with end sleeves, max. - Finely stranded without end sleeve - Stranded (max.)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 50,1 \times 70 \\ & 1 \times 50,1 \times 70 \end{aligned}$
		mm^{2}	2×70
	- Ribbon cable conductors (number x width x circumference), max.	mm	$2 \times(6 \times 15.5 \times 0.8)$
	- AWG conductors, solid or stranded, max.	AWG	$2 \times 1 / 0$
Front or rear clamping point connected	Main conductors With 3RT19 56-4G box terminal		
	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 16 \ldots 120 \\ & 16 \ldots 120 \end{aligned}$
	- Stranded	mm^{2}	$16 . .120$
	- Ribbon cable conductors (number x width x circumference)	mm	$3 \times 9 \times 0.8 \ldots 10 \times 15.5 \times 0.8$
	- AWG conductors, solid or stranded	AWG	6 ... 250 kcmil
Both clamping points connected			
	- Finely stranded with end sleeves, max. - Finely stranded without end sleeve	$\frac{\mathrm{mm}^{2}}{\mathrm{~mm}^{2}}$	$\begin{aligned} & 1 \times 95,1 \times 120 \\ & 1 \times 95,1 \times 120 \end{aligned}$
	- Stranded (max.)	mm^{2}	2×120
	- Ribbon cable conductors (number x width x circumference), max.	mm	$2 \times(10 \times 15.5 \times 0.8)$
	- AWG conductors, solid or stranded, max. - Terminal screws - Tightening torque	AWG Nm	$2 \times 3 / 0$ M10 (hexagon socket, A/F4) 10 ... 12 (90 ... $110 \mathrm{lb} . \mathrm{in}$)
Screw terminals	Main conductors: Without box terminal/rail connection ${ }^{1)}$		
	- Finely stranded with cable lug - Stranded with cable lug		$\begin{aligned} & 16 \ldots 95 \\ & 25 \ldots 120 \end{aligned}$
	- AWG conductors, solid or stranded		4 ... 250 kcmil
	- Connecting bar (max. width)		17
	- Terminal screw - Tightening torque		$\begin{aligned} & \text { M8 } \times 25(\mathrm{~A} / \mathrm{F} 13) \\ & 10 \ldots 14(90 \ldots 110) \mathrm{lb} . \mathrm{in} \end{aligned}$
	Auxiliary conductors:		
	- Conductor cross-section - Solid		$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2}\right) \text { according to IEC 60947; max. } 2 \times \\ & (0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)} \\ & 2 \times(18 \ldots 14) \end{aligned}$
	- Terminal screw - Tightening torque	Nm	M3 (PZ 2) 0.8 ... 1.2 (7 ... 10.3) lb.in

1) When connecting cable lugs according to DIN 46235, use the 3RT19 56-4EA1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing.
2) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

| Contactor | Type
 Size | | 3RT14 66 |
| :--- | :--- | :--- | :--- | :--- |
| S10 | | | |

1) When connecting cable lugs to DIN 46234 , the 3RT19 66-4EA1 terminal cover must be used for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more as well as DIN 46235 for conductor cross-sections of $185 \mathrm{~mm}^{2}$ and more to keep the phase clearance.
${ }^{2)}$ If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

[^0]: Dependence of the switching frequency z on According to AC-3 (AC/DC

