3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW
Technical specifications

SIRIUS controls are climate-proof and are suitable and tested for use worldwide.
If the devices are used in ambient conditions which deviate from common industrial conditions (EN 60721-3-3 "Stationary Use,

Weather-Protected"), the manufacturer must be consulted about possible restrictions with regard to the reliability and endurance of the device and possible protective measures.

1) Attachable auxiliary switch blocks for size SOO and laterally mountable auxiliary switch blocks for S0 to S12: 6 A.
2) Up to 500 V switching capacity for laterally mountable auxiliary switch blocks.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching resistive and inductive AC loads (AC-1/AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The rated operational current I_{e} complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of at least 200000 operating cycles.
If a shorter endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.

If the contacts are used for mixed operation, i.e. if normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
x=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation $\left(I_{\mathrm{a}}=I_{\mathrm{e}}\right)$ in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

Diagram legend:

$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

Size S00

Size So

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Endurance of the main contacts

Size S2

Sizes S6 to S12

3RT12 vacuum contactors

Sizes S10 and S12

Diagram legend:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 1 . \\ & \text { S00 } \end{aligned}$
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.	AC and DC operation		
Upright mounting position:	AC operation		Special version required. Standard version
Mechanical endurance	Basic unit Basic unit with snap-on auxiliary switch block Solid-state compatible auxiliary switch block	Operating cycles	30 million 10 million 5 million
Electrical endurance			1)
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (degree of pollution 3)		V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$		kV	6
Safe isolation between the coil and the main contacts according to EN 60947-1, Appendix N		V	400

according to EN 60947-1, Appendix N

Mirror contacts

- A mirror contact is an auxiliary NC 3RT10 1., 3RT13 1. Yes, this applies to both the basic unit as well as to between the basic contact that cannot be closed (removable auxiliary switch block) simultaneously with a NO main contact.

3RT10 1., 3RT13 1.
(permanent auxiliary switch block) Yes, according to EN 60947-4-1, Appendix F, SUVA

- No mirror contacts for the
solid-state compatible

auxiliary switch blocks	3RH19 11-. NF..		
Ambient temperature	During operation During storage	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$		
Degree of protection according to EN 60947-1, Appendix C		IP20, coil assembly IP40	
Touch protection according to EN 50274		Finger-safe	
Shock resistance rectangular pulse	AC operation	g / ms	$7 / 5$ and $4.2 / 10$
	DC operation	g / ms	$7 / 5$ and $4.2 / 10$
Shock resistance sine pulse	AC operation	g / ms	$9.8 / 5$ and $5.9 / 10$
	DC operation	g / ms	$9.8 / 5$ and $5.9 / 10$

Conductor cross-sections

For short-circuit protection for contactors with overload relays see Protection Equipment: Overload Relays
For short-circuit protection for fuseless load feeders see Load Feeders, Motor Starters and Soft Starters: -> 3RA Fuseless Load Feeders.

Main circuit

- Fuse links gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE
$\begin{array}{ll}\text { - Acc. to IEC 60947-4-1/ } & \begin{array}{l}\text { Type of coordination "1" } \\ \text { EN 60947-4-1 }\end{array} \\ & \text { Type of coordination "2" } \\ \text { Weld-free }\end{array}$
- Miniature circuit breakers (up to 230 V) with C characteristic Short-circuit current 1 kA , type of coordination "1"

Auxiliary circuit

- Fuse links gL/gG

DIAZED 5SB, NEOZED 5SE (weld-free protection $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)

- Miniature circuit breakers up to 230 V with C characteristic Short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$

1) See endurance of the main contacts on page $3 / 18$.
2) For conductor cross-sections see page $3 / 23$
3) Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 1 . \\ & \text { S00 } \end{aligned}$
Control			
Magnetic coil operating range			
- AC operation		$\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{S}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{S}} \end{aligned}$
- DC operation		up to $50^{\circ} \mathrm{C}$ up to $60^{\circ} \mathrm{C}$	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{S}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{S}} \\ & \hline \end{aligned}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)			
AC operation, $50 / 60 \mathrm{~Hz}$			
Standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 27 / 24.3 \\ & 0.8 / 0.75 \\ & 4.4 / 3.4 \\ & 0.27 / 0.27 \end{aligned}$
AC operation, 50 Hz , USA/Canada	- Closing - P.f. for closing - Closed - P.f. for closed	VA VA	$\begin{aligned} & 26.4 \\ & 0.81 \\ & 4.7 \\ & 0.26 \end{aligned}$
AC operation, 60 Hz , USA/Canada	- Closing - P.f. for closing - Closed - P.f. for closed	VA VA	$\begin{aligned} & 31.7 \\ & 0.77 \\ & 5.1 \\ & 0.27 \end{aligned}$
DC operation	Closing = Closed	W	3.3
Permissible residual current of the electronics (with 0 signal)			
	- AC operation		$<3 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$, the 3RT19 16-1GA00 additional load module is recommended for a higher residual current
	- DC operation		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$, the 3RT19 16-1GA00 additional load module is recommended for a higher residual current
Operating times ${ }^{1)}$			
Total break time $=$ Opening delay + Arcing time			
- AC operation at $0.8 \ldots 1.1 \times U_{S}$	Closing delay Opening delay	ms	$\begin{aligned} & 8 \ldots 35 \\ & 4 \ldots 30 \end{aligned}$
- DC operation $\text { at } 0.85 \ldots 1.1 \times U_{s}$	Closing delay Opening delay	ms	$\begin{aligned} & 25 \ldots 100 \\ & 7 \ldots 10 \end{aligned}$
- Arcing time		ms	$10 \ldots 15$
Operating times for $1.0 \times \mathbf{U}_{\text {S }}{ }^{1)}$			
- AC operation	Closing delay Opening delay	ms	$\begin{aligned} & 10 \ldots 25 \\ & 5 \ldots 30 \end{aligned}$
- DC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 50 \\ & 7 \ldots 9 \end{aligned}$

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 ms to 5 ms).

Contactor	Type Size			$\begin{aligned} & \text { 3RT10 } 15 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 16 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 17 \\ & \text { S00 } \end{aligned}$
Main circuit						
AC capacity						
Utilization category AC-1 Switching resistive loads						
Rated operational current $I_{\text {e }}$		at $40^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$
$\begin{aligned} & \text { Rated power for AC loads } \left.{ }^{1}\right) \\ & \text { P.f. }=0.95\left(\text { at } 60^{\circ} \mathrm{C}\right) \end{aligned}$		$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	kW kW kW kW	$\begin{aligned} & 6.3 \\ & 11 \\ & 13.8 \\ & 19 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 13 \\ & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 13 \\ & 17 \\ & 22 \end{aligned}$
Minimum conductor cross-section for loads with I_{e}		at $40^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$
Utilization category AC-2 and AC-3						
Rated operational currents I_{e}		$\begin{array}{r} \text { up to } 400 \mathrm{~V} \\ 440 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 6.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \\ & 9 \\ & 6.3 \end{aligned}$
Rated power for slipring or squirrelcage motors at 50 and 60 Hz		$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3 \\ & 3.5 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \\ & 5.5 \\ & 5.5 \end{aligned}$
Thermal load capacity		10 s current ${ }^{2}$)	A	56	72	96

[^0]2) According to IEC 60947-4-1. For rated values for various start-up
conditions see Protection Equipment: Overload Relays.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

$\begin{array}{ll}\text { Contactor } & \text { Type } \\ & \text { Size }\end{array}$	Type Size		$\begin{aligned} & \text { 3RT10 } 15 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 16 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 17 \\ & \text { S00 } \end{aligned}$
Main circuit					
AC capacity					
Power loss per conducting path	at $I_{\mathrm{e}} / \mathrm{AC}-3$	W	0.42	0.7	1.24
Utilization category AC-4 (for $\left.I_{\mathrm{a}}=6 \times I_{\mathrm{e}}\right)^{1)}$					
Rated operational current I_{e}	up to 400 V	A	6.5	8.5	8.5
Rated power for squirrel-cage motors with 50 Hz and 60 Hz	up to 400 V	kW	3	4	4
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational currents I_{e}	$\begin{array}{r} \text { up to } 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.3 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 0.67 \\ & 1.15 \\ & 1.45 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2 \\ & 2 \\ & 2.5 \end{aligned}$

Utilization category AC-5a

Switching gas discharge lamps, inductive ballast

Per main current path at 230 V

- Uncorrected,
rated power per lamp/rated operational current per lamp
- Lead-lag circuit,
rated power per lamp/rated operational current per lamp

L $18 \mathrm{~W} / 0.37 \mathrm{~A}$	Units	30	43	43
L $36 \mathrm{~W} / 0.43$ A	Units	26	37	37
L $58 \mathrm{~W} / 0.67 \mathrm{~A}$	Units	16	23	23
		144	144	
L 18 W/0.11 A	Units	100	76	76
L 36 W/0.21 A	Units	54	50	50

Switching gas discharge lamps with correction

Per main current path at 230 V

- Shunt compensation with inductive ballast,
rated power per lamp/capacitance/
rated operational current per lamp
- With solid-state ballast (single lamp)
- With solid-state ballast (two lamps)

Utilization category AC-6a

Switching AC transformers

Rated operational current I_{e}

- For inrush current $\mathrm{n}=20$

up to 400 V	A	3.6	5.1	7.2
up to 400 V	A	2.4	3.3	5.1
at 230 V	kVA	1.4	2	2.9
400 V	kVA	2.5	3.5	5
500 V	kVA	3.3	4.6	6.2
690 V	kVA	4.3	6	8.6
at 230 V	KVA	1	1.3	2
400 V	KVA	1.6	3.3	3.5
500 V	KVA	2.2	4.1	4.6
690 V	kVA	2.9		

- For inrush current $\mathrm{n}=30$

Rated power P

- For inrush current $\mathrm{n}=20$
- For inrush current $\mathrm{n}=30$

L $18 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.11 \mathrm{~A}$	Units	16	22	22
L 36 W/4.5 $\mu \mathrm{F} / 0.21 \mathrm{~A}$	Units	16	22	22
L $58 \mathrm{~W} / 7.0 \mu \mathrm{~F} / 0.32 \mathrm{~A}$	Units	10	14	14
L $18 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.10 \mathrm{~A}$	Units	44	63	63
L $36 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	25	35	35
L $58 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.27 \mathrm{~A}$	Units	16	23	23
L $18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	25	35	35
L $36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$	Units	13	18	18
L $58 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.52 \mathrm{~A}$	Units	8	12	12
nt lamps	kW	1.2	1.6	1.6

3.6	5.1	7.2
2.4	3.3	5.1
1.4	2	2.9
2.5	3.5	5
3.3	4.6	6.2
4.3	6	8.6
1	1.3	2
1.6	2.3	3.5
2.2	3.1	4.6
2.9	4	6

For deviating inrush current factors x , the power must be recalculated as follows: $P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

1) The data only apply to 3RT15 16 and 3RT15 17 (2 NO +2 NC) up to a rated operational voltage of 400 V .

Contactor	Type Size	3RT10 15	3RT10 16	3RT10 17	
		S00	S00	S00	

Main circuit
Load rating with $D C$

Utilization category DC-1
Switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)
Rated operational current $I_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$

- 1 conducting path
- 2 conducting paths in series

3 conducting paths in series

up to 24 V	A	15	20
60 V	A	15	20
110 V	A	1.5	2.1
220 V	A	0.6	0.8
440 V	A	0.42	0.6
600 V	A	0.42	0.6
up to 24 V	A	15	20
60 V	A	15	20
110 V	A	8.4	12
220 V	A	1.2	1.6
440 V	A	1.6	0.8
600 V	A	0.5	0.7
up to 24 V	A	15	20
60 V	A	15	20
110 V	A	15	20
220 V	A	15	20
440 V	A	0.9	1.3
600 V	A	0.7	1

Utilization category DC-3 and DC-5
Shunt-wound and series-wound motors ($L / R \leq 15$ ms)
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

up to 24 V	A	15	20
60 V	A	0.35	0.5
110 V	A	0.1	0.15
220 V	A	--	--
440 V	A	--	--
600 V	A	--	--
up to 24 V	A	15	20
60 V	A	3.5	5
110 V	A	0.25	0.35
220 V	A	--	--
440 V	A	--	--
600 V	A	--	20
up to 24 V	A	15	20
60 V	A	15	20
110 V	A	15	1.5
220 V	A	1.2	0.2
440 V	A	0.14	0.2
600 V	A	0.14	

Switching frequency

Switching frequency \mathbf{z} in operating cycles/hour

- Contactors without overload relay

Dependence of the switching
No-load switching frequency AC

h^{-1}	10000
h^{-1}	10000
h^{-1}	1000
h^{-1}	750
h^{-1}	750
h^{-1}	250

current I ' and operational voltage U ': No-load switching frequency DC Rated operation AC-1 (ACIDC) AC-1 (AC/DC) AC-2 (AC/DC) AC-3 (AC/DC) AC-4 (AC/DC)
$z=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

- Contactors with overload relays (mean value)
$h^{-1} \quad 15$

Conductor cross-sections

- Screw terminals Main and auxiliary conductors:
(1 or 2 conductors can be connected) - Solid
For standard screwdriver size 2 and
Pozidriv 2
- Finely stranded with end sleeve
$\left.\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)^{1}\right) ; 2 \times(0.75 \ldots 2.5)^{1)}$ according to IEC 60947;
max. $2 \times(1 \ldots 4)$
$\left.\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)^{1}\right) ; 2 \times(0.75 \ldots 2.5)^{1)}$
- Solid or stranded,

AWG conductors

- Terminal screw AWG $2 \times(20 \ldots 16)^{1)} ; 2 \times(18 \ldots 14)^{1)} ; 1 \times 12$
- Tightening torque
$\mathrm{Nm} \quad \mathrm{M} 3$
- Cage Clamp terminals Main and auxiliary conductors;
(1 or 2 conductors can be connected) coil connections:
- Solid
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG conductors, solid or stranded

mm^{2}	$2 \times(0.25 \ldots 2.5)$
mm^{2}	$2 \times(0.25 \ldots 1.5)$
mm^{2}	$2 \times(0.25 \ldots 2.5)$
AWG	$2 \times(24 \ldots 14)$

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum outer diameter of the conductor insulation: 3.6 mm .
With conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
${ }^{1)}$ If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted.
If identical cross-sections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type					
	Size	3RT10 23	3RT10 24	3RT10 25	3RT10 26	S0
General data		S0	S0	S0		

Permissible mounting position
The contactors are designed for operation on a vertical mounting surface.

Upright mounting position:

AC and DC operation
AC operation

DC operation

Short-circuit protection for contactors without overload relays

Main circuit

- Fuse links gL/gG

LV HRC 3NA, DIAZED 5SB, NEOZED 5SE

- Acc. to IEC 60947-4-1/

Type of coordination "1"
Type of coordination "2" Weld-free ${ }^{3)}$

- Miniature circuit breakers with C characteristic (short-circuit current 3 kA, type of coordination "1")

Auxiliary circuit

- Fus

DIAZED 5SB, NEOZED 5SE
A 10
(weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)

- Miniature circuit breaker with C characteristic

For short-circuit protection for contactors with overload relays see
Protection Equipment: Overload Relays
For short-circuit protection for fuseless load feeders see Load Feeders,
Motor Starters and Soft Starters: -> 3RA Fuseless Load Feeders.
$\begin{array}{ll}\text { Motor Starters and Soft Starters: -> 3RA Fuseless Load Feed } \\ 63 & 100\end{array}$
25
35
10
16
25
32
(short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)

1) See endurance of the main contacts on page $3 / 18$.
2) See conductor cross-sections on page $3 / 28$.
3) Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 2 . \\ & \text { S0 } \end{aligned}$
Control			
Magnetic coil operating range	AC/DC		$0.8 \ldots 1.1 \times U_{\text {S }}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)			
AC operation, 50 Hz , standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 61 \\ & 0.82 \\ & 7.8 \\ & 0.24 \end{aligned}$
AC operation, $50 / 60 \mathrm{~Hz}$, standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 64 / 63 \\ & 0.72 / 0.74 \\ & 8.4 / 6.8 \\ & 0.24 / 0.28 \end{aligned}$
AC operation, 50 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 61 \\ & 0.82 \\ & 7.8 \\ & 0.24 \end{aligned}$
AC operation, 60 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 69 \\ & 0.76 \\ & 7.5 \\ & 0.28 \end{aligned}$
DC operation	Closing = Closed	W	5.4
Permissible residual current of the electronics (with 0 signal)			
	- AC operation - DC operation	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & <6 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & <16 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$
Operating times for $0.8 \ldots 1.1 \times \mathbf{U S}^{1{ }^{1}}$			
Total break time $=$ Opening delay + Arcing time			
- AC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 8 \ldots 44 \\ & 4 \ldots 20 \end{aligned}$
- DC operation	Closing delay Opening delay	ms ms	$\begin{aligned} & 50 \ldots 170 \\ & 13.5 \ldots 15.5 \end{aligned}$
- Arcing time		ms	10
Operating times for $1.0 \times \mathbf{U S}^{1)}$			
- AC operation	Closing delay Opening delay	ms ms	$\begin{aligned} & 10 \ldots 17 \\ & 4 \ldots 20 \end{aligned}$
- DC operation	Closing delay Opening delay	ms ms	$\begin{aligned} & 55 \ldots 85 \\ & 14 \ldots 15.5 \end{aligned}$

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

Contactor $\begin{array}{ll}\text { Type } \\ & \text { Size }\end{array}$	Type Size		$\begin{aligned} & \text { 3RT10 } 23 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 25 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 26 \\ & \text { S0 } \end{aligned}$
Main circuit						
AC capacity						
Utilization category AC-1 Switching resistive loads						
Rated operational current I_{e}	at $40^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$			
Rated power for AC loads ${ }^{1)}$ P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 13.3 \\ & 23 \\ & 29 \\ & 40 \end{aligned}$			
Minimum conductor cross-section for loads with I_{e}	at $40^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			
Utilization category AC-2 and AC-3						
Rated operational currents I_{e}	$\begin{array}{r} \text { up to } 400 \mathrm{~V} \\ 440 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 6.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 9 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & 18 \\ & 13 \end{aligned}$
Rated power for slipring or squirrelcage motors at 50 and 60 Hz	$\begin{array}{r} \text { at } 110 \mathrm{~V} \\ 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 660 \mathrm{~V} / 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 3 \\ & 4 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3 \\ & 5.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 4 \\ & 7.5 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \\ & 11 \\ & 11 \\ & 11 \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$)	A	80	110	150	200
Power loss per conducting path	at $I_{\mathrm{e}} / \mathrm{AC}-3$	W	0.4	0.5	0.9	1.6

1) Industrial furnaces and electric heaters with resistance heating, etc.
(increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions
see Protection Equipment: Overload Relays.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor $\begin{array}{ll}\text { Type } \\ & \text { Size }\end{array}$	Type Size		$\begin{aligned} & \text { 3RT10 } 23 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 25 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 26 \\ & \text { S0 } \end{aligned}$
Main circuit						
AC capacity						
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)						
Rated operational current I_{e}	up to 400 V	A	8.5	12.5	15.5	15.5
Rated power for squirrel-cage motors with 50 Hz and 60 Hz	at 400 V	kW	4	5.5	7.5	7.5
- The following applies to a contact endurance of about 200000 operating cycles:						
Rated operational currents I_{e}	$\begin{array}{r} \text { up to } 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$
Rated power for squirrel-cage motors with 50 Hz and 60 Hz	at 110 V	kW	0.5	0.73	1	1.2
	230 V	kW	1.1	1.5	2	2.5
	400 V	kW	2	2.6	3.5	4.4
	500 V	kW	2	3.3	4.6	5.6
	690 V	kW	2.5	4.6	6	7.7

Utilization category AC-5a			
Switching gas discharge lamps, inductive ballast			
Per main current path at $230 \mathrm{~V}{ }^{\prime}$)			
Rated power per lamp/rated operational current per lamp			
Uncorrected	$\mathrm{L} 18 \mathrm{~W} / 0.37 \mathrm{~A}$	Units	95
	$\mathrm{~L} \mathrm{36} \mathrm{W} / 0.43 \mathrm{~A}$	Units	81
	$\mathrm{~L} 58 \mathrm{~W} / 0.67 \mathrm{~A}$	Units	52
Lead-lag circuit	$\mathrm{L} 18 \mathrm{~W} / 0.11 \mathrm{~A}$	Units	318
	$\mathrm{~L} \mathrm{36} \mathrm{W/0.21} \mathrm{~A}$	Units	166
	$\mathrm{~L} 58 \mathrm{~W} / 0.32 \mathrm{~A}$	Units	109

Switching gas discharge lamps with correction

Per main current path at 230 V
Rated power per lamp/capacitance/rated operational current per lamp

- Shunt compensation with inductive ballast	L $18 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.11 \mathrm{~A}$ L 36 W/4.5 $\mu \mathrm{F} / 0.21 \mathrm{~A}$ L $58 \mathrm{~W} / 7.0 \mu \mathrm{~F} / 0.32 \mathrm{~A}$	Units Units Units	$\begin{aligned} & 37 \\ & 37 \\ & 23 \end{aligned}$	$\begin{aligned} & 61 \\ & 61 \\ & 39 \end{aligned}$
- With solid-state ballast (single lamp)	L $18 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.10 \mathrm{~A}$ L 36 W/6.8 $\mu \mathrm{F} / 0.18 \mathrm{~A}$ L $58 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.27 \mathrm{~A}$	Units Units Units	$\begin{aligned} & 105 \\ & 58 \\ & 38 \end{aligned}$	$\begin{aligned} & 175 \\ & 97 \\ & 64 \end{aligned}$
- With solid-state ballast (two lamps)	L $18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$ L $36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$ L $58 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.52 \mathrm{~A}$	Units Units Units	$\begin{aligned} & 58 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 97 \\ & 50 \\ & 33 \end{aligned}$
Utilization category AC-5b, switching inc Per main current path at 230/220 V	nt lamps	kW	3	4
Utilization category AC-6a, switching AC transformers				
Rated operational current $I_{\text {e }}$ - For inrush current $\mathrm{n}=20$ - For inrush current $n=30$	up to 400 V up to 400 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 11.4 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 20.2 \\ & 13.5 \end{aligned}$
Rating P				
- For inrush current $\mathrm{n}=20$	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	kVA kVA kVA kVA	$\begin{aligned} & 4.5 \\ & 7.9 \\ & 9.9 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 8 \\ & 13.9 \\ & 15.5 \\ & 15.5 \end{aligned}$
- For inrush current $\mathrm{n}=30$	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	kVA kVA kVA kVA	$\begin{aligned} & 3 \\ & 5.2 \\ & 6.6 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 9.3 \\ & 11.7 \\ & 15.5 \end{aligned}$
For deviating inrush current factors x, the power must be recalculated as follows:$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$				
Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC capacitors				
Rated operational currents I_{e}	up to 400 V	A	5.8	10.8
Rated power for single capacitors or banks of capacitors (minimum inductance of $6 \mu \mathrm{H}$ between capacitors connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	kvar kvar kvar kvar	$\begin{aligned} & 2.5 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 7.5 \\ & 7.5 \\ & 7.5 \end{aligned}$

[^1] cross-section $10 \mathrm{~mm}^{2}$.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor $\begin{array}{ll}\text { Type } \\ & \text { Size }\end{array}$			$\begin{aligned} & \text { 3RT10 } 23 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 25 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 26 \\ & \text { S0 } \end{aligned}$
Main circuit						
Load rating with DC						
Utilization category DC-1, switching of resistive loads ($L / R \leq 1 \mathbf{m s}$)						
Rated operational current I_{e} (for $60{ }^{\circ} \mathrm{C}$)						
- 1 conducting path	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & 4.5 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.4 \\ & 0.25 \end{aligned}$			
- 2 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \end{aligned}$			
- 3 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 35 \\ & 2.9 \\ & 1.4 \end{aligned}$			
Utilization category DC-3 and DC-5 Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$) Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)						
- 1 conducting path	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \\ & 2.5 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \\ & 0.09 \\ & 0.06 \end{aligned}$			
- 2 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 15 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 0.27 \\ & 0.16 \end{aligned}$			
- 3 conducting paths in series	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 0.6 \\ & 0.6 \\ & \hline \end{aligned}$			
Switching frequency						
Switching frequency \boldsymbol{z} in operating cycles/hour						
- Contactors without overload relays	No-load switching frequency AC	h^{-1}	5000			
Dependence of the switching frequency z on the operational current I ' and operational	No-load switching frequency DC	h^{-1}	1500			
voltage $U^{\prime}:$ $Z^{\prime}=Z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	$\begin{aligned} & \mathrm{AC}-1(\mathrm{AC} / \mathrm{DC}) \\ & \mathrm{AC}-2(\mathrm{AC} / \mathrm{DC}) \\ & \mathrm{AC}-3(\mathrm{AC} / \mathrm{DC}) \\ & \mathrm{AC}-4(\mathrm{AC} / \mathrm{DC}) \end{aligned}$	$\begin{aligned} & h^{-1} \\ & h^{-1} \\ & h^{-1} \\ & h^{-1} \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 300 \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 250 \end{aligned}$
- Contactors with overload relays (mean value)		h^{-1}	15			

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 23 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 25 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 26 \\ & \text { S0 } \end{aligned}$
Conductor cross-sections						
Screw terminals (1 or 2 conductors can be connected)	Main conductors Conductor cross-section - Solid - Finely stranded with end sleeve - AWG conductors, solid - AWG conductors, solid or stranded - AWG conductors, stranded - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG AWG AWG Nm	$2 \times(1 \ldots 2.5)^{1)} ; 2 \times(2.5 \ldots 6)^{1)}$ according to IEC 60947; max. 1×10 $\left.2 \times(1 \ldots 2.5)^{1}\right)^{\prime} ; 2 \times(2.5 \ldots 6)^{1)}$ $2 \times(16 \ldots 12)$ $2 \times(14 \ldots 10)$ 1×8 M4 (Pozidriv size 2) 2 ... 2.5 (18 ... 22 lb.in)			
	Auxiliary conductors Conductor cross-section - Solid - Finely stranded with end sleeve - Solid or stranded AWG (2 x) - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG NM	$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{1}\right) ; 2 \times(0.75 \ldots 2.5)^{1)} \text { according to IEC 60947; } \\ & \operatorname{max.} 2 \times(0.75,4) \\ & 2 \times(0.5 \ldots 1.5)^{i 1} ; 2 \times(0.75 \ldots 2 . .5)^{1)} \\ & 2 \times(20 \ldots 16)^{1} ; 2 \times(18 \ldots 14)^{1)} ; 1 \times 12 \\ & \text { M3 } \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \mathrm{lb} . \mathrm{in}) \end{aligned}$			
Cage Clamp terminals (1 or 2 conductors can be connected)	- Solid - Finely stranded with end sleeve mm^{2} - Finely stranded without end sleeve mm^{2} - AWG conductors, solid or stranded AWG		$\begin{aligned} & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(24 \ldots 14) \end{aligned}$			

1) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

Contactor	Type	3RT10 34	3RT10 35	3RT10 36
	Size	S2	S2	S2

Permissible mounting position
The contactors are designed for operation on a vertical mounting surface.

Upright mounting position:

AC and DC operation

1) See endurance of the main contacts on page $3 / 19$.
2) See conductor cross-sections on page $3 / 32$.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 34 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 35 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 36 \\ & \text { S2 } \end{aligned}$
Short-circuit protection for contactors without overload relays					
			For short-circuit protection for contactors with overload relays see Protection Equipment: Overload Relays For short-circuit protection for fuseless load feeders see Load Feeders, Motor Starters and Soft Starters: -> 3RA Fuseless Load Feeders.		
Main circuit Fuse links, gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE					
According to IEC 60947-4-1/ EN 60947-4-1	Type of coordination "1" Type of coordination "2" Weld-free ${ }^{1)}$	A A A	$\begin{aligned} & 125 \\ & 63 \\ & 16 \end{aligned}$	$\begin{aligned} & 125 \\ & 63 \\ & 16 \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \\ & 50 \end{aligned}$
Auxiliary circuit					
- Fuse links gL/gG DIAZED 5SB, NEOZED 5SE (weld-free	protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)	A	10		
- Miniature circuit breakers with C chara (short-circuit current $I_{\mathrm{k}} \leq 400 \mathrm{~A}$)	teristic	A	10		
Control					
Magnetic coil operating range	AC/DC		$0.8 \ldots 1.1 \times U_{\text {s }}$		
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)					
AC operation, 50 Hz , standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 104 \\ & 0.78 \\ & 9.7 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 145 \\ & 0.79 \\ & 12.5 \\ & 0.36 \end{aligned}$	
AC operation, $50 / 60 \mathrm{~Hz}$, standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 127 / 113 \\ & 0.73 / 0.69 \\ & 11.3 / 9.5 \\ & 0.41 / 0.42 \end{aligned}$	$\begin{aligned} & 170 / 155 \\ & 0.76 / 0.72 \\ & 15 / 11.8 \\ & 0.35 / 0.38 \end{aligned}$	
AC operation, 50 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 108 \\ & 0.76 \\ & 9.6 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 150 \\ & 0.77 \\ & 12.5 \\ & 0.35 \end{aligned}$	
AC operation, 60 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 120 \\ & 0.7 \\ & 10.1 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 166 \\ & 0.71 \\ & 12.6 \\ & 0.37 \end{aligned}$	
DC operation	Closing = Closed	W	13.3	13.3	
Permissible residual current of the electronics (with 0 signal)					
	- AC operation - DC operation	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & <12 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & <38 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$	$\begin{aligned} & <18 \mathrm{mAx} \\ & <38 \mathrm{mAx} \end{aligned}$	
Operating times for $0.8 \ldots 1.1 \times \mathbf{U}_{\mathrm{s}}{ }^{2)}$					
AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 11 \ldots 30 \\ & 7 \ldots 10 \end{aligned}$	$\begin{aligned} & 10 \ldots 24 \\ & 7 \ldots 10 \end{aligned}$	
DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 50 \ldots 95 \\ & 20 \ldots 30 \end{aligned}$	$\begin{aligned} & 60 \ldots 100 \\ & 20 \ldots 25 \end{aligned}$	
Arcing time		ms	10	10	
Operating times for $1.0 \times \boldsymbol{U}_{\mathrm{s}}{ }^{2)}$					
AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 13 \ldots 22 \\ & 7 \ldots 10 \end{aligned}$	$\begin{aligned} & 12 \ldots 20 \\ & 7 \ldots 10 \end{aligned}$	
DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 60 \ldots 75 \\ & 20 \ldots 30 \end{aligned}$	$\begin{aligned} & 70 \ldots 85 \\ & 20 \ldots 25 \end{aligned}$	

1) Test conditions according to IEC 60947-4-1.
2) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

| | Type | | |
| :--- | :--- | :--- | :--- | :--- |
| Contactor | | | |

Switching gas discharge lamps with correction

Per main current path at 230 V

- Shunt compensation with inductive ballast, rated power per lamp/capacitance/ rated operational current per lamp

$\mathrm{L} 18 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.11 \mathrm{~A}$	Units	78	98	123
$\mathrm{~L} 36 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.21 \mathrm{~A}$	Units	78	98	123
$\mathrm{~L} 58 \mathrm{~W} / 7 \mu \mathrm{~F} / 0.32 \mathrm{~A}$	Units	50	63	79
		280	350	
$\mathrm{~L} 18 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.10 \mathrm{~A}$	Units	224	155	194
$\mathrm{~L} 36 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	124	104	129
$\mathrm{~L} 58 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.27 \mathrm{~A}$	Units	83		
			155	194
		80	100	
$\mathrm{~L} 18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	124	54	67
L $36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$	Units	64		

${ }^{1)}$ Industrial furnaces and electric heaters with resistance heating, etc.
(increased power consumption on heating up has been taken into
account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see Protection Equipment:
Overload Relays.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Load rating with DC
Utilization category DC-1
Switching resistive loads ($L / R<1 \mathrm{~ms}$)
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

up to 24 V	A	45	55	55
60 V	A	20	23	23
110 V	A	4.5	4.5	4.5
220 V	A	1	1	1
440 V	A	0.4	0.4	0.4
600 V	A	0.25	0.25	0.25
up to 24 V	A	45	55	55
60 V	A	45	45	45
110 V	A	25	25	25
220 V	A	5	5	5
440 V	A	1	1	1
600 V	A	0.8	0.8	0.8
up to 24 V	A	45	55	55
60 V	A	45	55	55
110 V	A	45	55	55
220 V	A	45	45	45
440 V	A	2.9	2.9	2.9
600 V	A	1.4	1.4	1.4

Utilization category DC-3 and DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

- 1 conducting path
- 3 conducting paths in series

up to 24 V	A	35	35	35
60 V	A	6	6	6
110 V	A	2.5	2.5	2.5
220 V	A	1	1	1
440 V	A	0.1	0.1	0.1
600 V	A	0.06	0.06	0.06
up to 24 V	A	45	55	55
60 V	A	45	45	45
110 V	A	25	25	25
220 V	A	5	5	5
440 V	A	0.27	0.27	0.27
600 V	A	0.16	0.16	0.16
up to 24 V	A	45	55	55
60 V	A	45	55	55
110 V	A	45	25	55
220 V	A	25	0.6	25
440 V	A	0.6	0.35	0.6
600 V	A	0.35		0.35

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 3 . \\ & \text { S2 } \end{aligned}$
Conductor cross-sections			
Screw terminals (1 or 2 conductors can be connected)	Main conductors: with box terminal		
Front clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - Solid - Ribbon cable conductors (number \times width \times circumference) - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 0.75 \ldots 25 \\ & 0.75 \ldots 25 \\ & 0.75 \ldots 35 \\ & 0.75 \ldots 16 \\ & 6 \times 9 \times 0.8 \\ & 18 \ldots 2 \end{aligned}$
Rear clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - Solid - Ribbon cable conductors (number x width \times circumference) - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 0.75 \ldots 25 \\ & 0.75 \ldots .25 \\ & 0.75 \ldots .35 \\ & 0.75 \ldots 16 \\ & 6 \times 9 \times 0.8 \\ & 18 \ldots 2 \end{aligned}$
Both clamping points connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - Solid - Ribbon cable conductors (number \times width \times circumference) - AWG conductors, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG Nm	$\begin{aligned} & 2 \times(0.75 \ldots 16) \\ & 2 \times(0.75 \ldots 16) \\ & 2 \times(0.75 \ldots 25) \\ & 2 \times(0.75 \ldots 16) \\ & 2 \times(6 \times 9 \times 0.8) \\ & 2 \times(18 \ldots 2) \end{aligned}$ M6 (Pozidriv size 2) $3 \ldots 4.5 \text { (27 ... } 40 \mathrm{lb} . \mathrm{in})$
	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG NM	$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{1}\right) ; 2 \times(0.75 \ldots 2.5)^{1} \text { according to IEC } 60947 \text {; } \\ & \operatorname{max.~} 2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5)^{i 1)} ; 2 \times(0.75 \ldots 2 . .2)^{1)} \\ & 2 \times(20 \ldots 16)^{1)} ; 2 \times(18 \ldots 14)^{1)} ; 1 \times 12 \\ & \text { M3 } \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \mathrm{lb} . \mathrm{in}) \end{aligned}$
Cage Clamp terminals (1 or 2 conductors can be connected)	Auxiliary conductors: - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2}	$\begin{aligned} & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(24 \ldots 14) \end{aligned}$

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum outer diameter of the conductor insulation: 3.6 mm .
With conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
${ }^{1)}$ If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		3RT10 44
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.	AC and DC operation		

See endurance of the main contacts on page 3/19.
2) See conductor cross-sections on page $3 / 37$.
3) Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 44 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 45 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 46 \\ & \text { S3 } \end{aligned}$
Control					
Magnetic coil operating range	AC/DC		0.8... $1.1 \times$		
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)					
AC operation, 50 Hz , standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 218 \\ & 0.61 \\ & 21 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 270 \\ & 0.68 \\ & 22 \\ & 0.27 \end{aligned}$	
AC operation, $50 / 60 \mathrm{~Hz}$, standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 247 / 211 \\ & 0.62 / 0.57 \\ & 25 / 18 \\ & 0.27 / 0.3 \end{aligned}$	$\begin{aligned} & 298 / 274 \\ & 0.7 / 0.62 \\ & 27 / 20 \\ & 0.29 / 0.31 \end{aligned}$	
AC operation, 50 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 218 \\ & 0.61 \\ & 21 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 270 \\ & 0.68 \\ & 22 \\ & 0.27 \end{aligned}$	
AC operation, 60 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 232 \\ & 0.55 \\ & 20 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 300 \\ & 0.52 \\ & 21 \\ & 0.29 \end{aligned}$	
DC operation	Closing = Closed	W	15	15	
Permissible residual current of the electronics (with 0 signal)					
	- AC operation - DC operation		$\begin{aligned} & <25 \mathrm{mAx} \\ & <43 \mathrm{~mA} \times \end{aligned}$		
Operating times for $0.8 \ldots 1.1 \times \boldsymbol{U}_{\mathrm{s}}{ }^{1)}$ Total break time $=$ Opening delay + Arcing time					
- AC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 16 \ldots 57 \\ & 10 \ldots .19 \end{aligned}$	$\begin{aligned} & 17 \ldots 90 \\ & 10 \ldots 25 \end{aligned}$	
- DC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 90 \ldots 230 \\ & 14 \ldots 20 \end{aligned}$	$\begin{aligned} & 90 \ldots 230 \\ & 14 \ldots 20 \end{aligned}$	
- Arcing time		ms	$10 \ldots 15$	$10 \ldots 15$	
Operating times for $1.0 \times \mathrm{U}^{1}{ }^{1)}$					
- AC operation	Closing delay Opening delay	ms ms	$\begin{aligned} & 18 . .34 \\ & 11 \ldots .18 \end{aligned}$	$\begin{aligned} & 18 \ldots 30 \\ & 11 \ldots 23 \end{aligned}$	
- DC operation	Closing delay Opening delay	ms ms	$\begin{aligned} & 100 \ldots 120 \\ & 16 \ldots 20 \end{aligned}$	$\begin{aligned} & 100 \ldots 120 \\ & 16 \ldots 20 \end{aligned}$	

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor Type Size Main circuit			$\begin{aligned} & \text { 3RT10 } 44 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 45 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 46 \\ & \text { S3 } \end{aligned}$
AC capacity					
Utilization category AC-1 Switching resistive loads					
Rated operational currents $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V 1000 V at $60^{\circ} \mathrm{C}$ up to 690 V 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & 90 \\ & 40 \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 120 \\ & 70 \\ & 100 \\ & 60 \end{aligned}$
Rated output of $A C$ loads ${ }^{1)}$ $\text { P.f. }=0.95\left(\text { at } 60^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	kW kW kW kW kW	$\begin{aligned} & 34 \\ & 59 \\ & 74 \\ & 102 \\ & 66 \end{aligned}$	38 66 82 114 82	$\begin{aligned} & 38 \\ & 66 \\ & 82 \\ & 114 \\ & 98 \end{aligned}$
Minimum conductor cross-section for loads with I_{e}	at $40^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \end{aligned}$
Utilization categories AC-2 and AC-3					
Rated operational currents $I_{\text {e }}$	$\begin{array}{r} \text { up to } 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 65 \\ & 47 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 58 \\ & 30 \end{aligned}$	$\begin{aligned} & 95 \\ & 58 \\ & 30 \end{aligned}$
Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 18.5 \\ & 30 \\ & 37 \\ & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & 22 \\ & 37 \\ & 45 \\ & 55 \\ & 37 \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \\ & 55 \\ & 55 \\ & 37 \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$)	A	600	760	760
Power loss per conducting path	at $I_{\mathrm{e}} / \mathrm{AC}-3$	W	4.6	7.7	10.8
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)					
Rated operational current $I_{\text {e }}$	up to 400 V	A	55	66	80
Rated power for squirrel-cage motors with 50 Hz and 60 Hz	at 400 V	kW	30	37	45
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational currents I_{e}	$\begin{array}{r} \text { up to } 400 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 28 \\ & 28 \\ & 20 \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \\ & 23 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 23 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 8.7 \\ & 15.1 \\ & 18.4 \\ & 25.4 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.4 \\ & 17.9 \\ & 22.4 \\ & 30.9 \\ & 30 \end{aligned}$	$\begin{aligned} & 12 \\ & 22 \\ & 27 \\ & 38 \\ & 30 \\ & \hline \end{aligned}$

Utilization category AC-5a Switching gas discharge lamps, inductive ballast
 Per main current path at 230 V

- Uncorrected,
rated power per lamp/rated operational current per lamp

Switching gas discharge lamps with correction

Per main current path at 230 V

- Shunt compensation with inductive ballast,
rated power per lamp/capacitance/rated operational current per lamp

L18 W/4.5 $\mu \mathrm{F} / 0.11 \mathrm{~A}$	Units	160	197	234
$\mathrm{~L} 36 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.21 \mathrm{~A}$	Units	160	197	234
$\mathrm{~L} 58 \mathrm{~W} / 7 \mu \mathrm{~F} / 0.32 \mathrm{~A}$	Units	103	127	150
$\mathrm{~L} 18 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.10 \mathrm{~A}$	Units	455	560	665
$\mathrm{~L} 36 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	253	311	369
$\mathrm{~L} 58 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.27 \mathrm{~A}$	Units	168	207	246
		311	369	
$\mathrm{~L} 18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	253	160	190
$\mathrm{~L} 36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$	Units	130	108	128
$\mathrm{~L} 58 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.52 \mathrm{~A}$	Units	88		
			14.6	17.3

Switching incandescent lamps

Per main current path at 230/220 V

[^2]2) According to IEC 60947-4-1.

For rated values for various start-up conditions see Protection Equipment: Overload Relays.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Utilization category AC-6b

Switching low-inductance (low-loss, metallized dielectric) AC capacitors

Rated operational currents $I_{\mathrm{e}}\left(60^{\circ} \mathrm{C}\right)$	up to 400 V	A	57	72
Rated power for single capacitors or	at 230 V	kvar	24	29
banks of capacitors (minimum	400 V	kvar	40	50
inductance of $6 \mu \mathrm{H}$ between capacitors	525 V	kvar	50	65
connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ 690 V and kvar 40		50		

Load rating with DC

Utilization category DC-1

Switching resistive load ($L / R \leq 1 \mathrm{~ms}$)

Rated operational current $I_{\mathrm{e}}\left(60^{\circ} \mathrm{C}\right)$

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

up to 24 V	A	90	100	100
60 V	A	23	60	60
110 V	A	4.5	9	9
220 V	A	1	2	2
440 V	A	0.4	0.6	0.6
600 V	A	0.26	0.4	0.4
up to 24 V	A	90	100	100
60 V	A	90	100	100
110 V	A	90	100	100
220 V	A	5	10	10
440 V	A	1	1.8	1.8
600 V	A	0.8	1	1
up to 24 V	A	90	100	100
60 V	A	90	100	100
110 V	A	90	100	100
220 V	A	70	80	80
440 V	A	2.9	1.8	4.5
600 V	A	1.4		2.6

Utilization category DC-3 and DC-5

Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)
Rated operational current $I_{\mathrm{e}}\left(60^{\circ} \mathrm{C}\right)$

- 1 conducting path
- 3 conducting paths in series

up to 24 V	A	40	40
60 V	A	6	6.5
110 V	A	2.5	2.5
220 V	A	1	1
440 V	A	0.15	0.15
600 V	A	0.06	0.06
up to 24 V	A	90	100
60 V	A	90	100
110 V	A	90	100
220 V	A	7	7
440 V	A	0.42	0.42
600 V	A	0.16	0.16
up to 24 V	A	90	100
60 V	A	90	100
110 V	A	90	100
220 V	A	35	35
440 V	A	0.8	0.8
600 V	A	0.35	0.35

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\text { 3RT10 } 44$ S3	$\text { 3RT10 } 45$ S3	$\text { 3RT10 } 46$ S3
Main circuit					
Switching frequency					
Switching frequency \boldsymbol{z} in operating cycles/hour					
- Contactors without overload relays	No-load switching frequency AC No-load switching frequency DC	h^{-1} h^{-1}	$\begin{aligned} & 5000 \\ & 1000 \end{aligned}$	5000 1000	5000 1000
Dependence of the switching	No-load swiching AC-1 (AC/DC)	h^{-1}	1000	900	900
frequency z z on the operational	AC-2 (AC/DC)	h^{-1}	400	400	350
current I ' and operational voltage U :	AC-3 (AC/DC)	h^{-1}	1000	1000	850
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	AC-4 (AC/DC)	h^{-1}	300	300	250
- Contactors with overload relays (mean	n value)	h^{-1}	15	15	15

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 4 . \\ & \text { S3 } \end{aligned}$
Conductor cross-sections			
Screw terminals (1 or 2 conductors can be connected)	Main conductors: with box terminal		
Front clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Solid - Stranded - Ribbon cable conductors (number x width x circumference) - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 2.5 \ldots 35 \\ & 4 \ldots 50 \\ & 2.5 \ldots 16 \\ & 4 \ldots 70 \\ & 6 \times 9 \times 0.8 \\ & 10 \ldots 2 / 0 \end{aligned}$
Rear clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Solid - Stranded - Ribbon cable conductors (number \times width \times circumference) - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 2.5 \ldots 50 \\ & 10 \ldots 50 \\ & 2.5 \ldots 16 \\ & 10 \ldots 70 \\ & 6 \times 9 \times 0.8 \\ & 10 \ldots 2 / 0 \end{aligned}$
Both clamping points connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Solid - Stranded - Ribbon cable conductors (number \times width \times circumference) - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 2 \times(2.5 \ldots 35) \\ & 2 \times(4 \ldots 35) \\ & 2 \times(2.5 \ldots 16) \\ & 2 \times(4 \ldots 50) \\ & 2 \times(6 \times 9 \times 0.8) \\ & 2 \times(10 \ldots 1 / 0) \end{aligned}$
Connection for drilled copper bars ${ }^{1)}$	- Terminal screw - Tightening torque max. width	Nm mm	$\begin{aligned} & \text { M6 (hexagon socket, A/F 4) } \\ & 4 \ldots 6(36 \ldots 53 \mathrm{lb} . \mathrm{in}) \\ & 10 \end{aligned}$
Without box terminal with cable lugs ${ }^{2}$) (1 or 2 conductors can be connected)	- Finely stranded with cable lug - Stranded with cable lug - AWG conductors, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 10 \ldots 50^{3)} \\ & 10 \ldots 70^{3)} \\ & 7 \ldots 1 / 0 \end{aligned}$
	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{4)} ; 2 \times(0.75 \ldots 2.5)^{4)} \text { according to IEC 60947; } \\ & \operatorname{max.} 2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5)^{4)} ; 2 \times(0.75 \ldots 2.5)^{4)} \\ & 2 \times(20 \ldots 16)^{4)} ; 2 \times(18 \ldots 14)^{4)} ; 1 \times 12 \\ & \text { M3 } \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \mathrm{lb} . \mathrm{in}) \end{aligned}$
Cage Clamp terminals (1 or 2 conductors can be connected)	Auxiliary conductors: - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG conductors, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(24 \ldots 14) \end{aligned}$

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum outer diameter of the conductor insulation: 3.6 mm .
For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, Accessories and Spare Parts.

1) If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a 3RT19 46-4EA1 terminal cover is needed to comply with the phase clearance.
2) If bars larger than $25 \mathrm{~mm}^{2}$ are connected, a 3RT19 46-4EA1 terminal cover is needed to comply with the phase clearance.
3) Only with crimped cable lugs according to DIN 46234. Cable lug max. 20 mm wide.
4) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

${ }^{1)}$ See endurance of the main contacts on page $3 / 19$.
${ }^{2)}$ See conductor cross-sections on page $3 / 42$.
${ }^{3)}$ See electromagnetic compatibility (EMC) on page 3/12.
${ }^{4)}$ Test conditions according to IEC 60947-4-1.

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor		
	Type	

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type	3RT10 54	3RT10 55	3RT10 56
	Size	S6	S6	S6

Main circuit

AC capacity
Utilization category AC-1
Switching resistive loads

Rated operational currents I_{e}	at $40^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \\ & 80 \end{aligned}$	$\begin{aligned} & 185 \\ & 160 \\ & 90 \end{aligned}$	$\begin{aligned} & 215 \\ & 185 \\ & 100 \end{aligned}$
Rated power for AC loads ${ }^{1)}$ $\text { P.f. }=0.95\left(\text { at } 60^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	kW kW kW kW kW	$\begin{aligned} & 53 \\ & 92 \\ & 115 \\ & 159 \\ & 131 \end{aligned}$	$\begin{aligned} & 60 \\ & 105 \\ & 131 \\ & 181 \\ & 148 \end{aligned}$	$\begin{aligned} & 70 \\ & 121 \\ & 152 \\ & 210 \\ & 165 \end{aligned}$
Minimum conductor cross-section for loads with I_{e}	at $40^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 95 \\ & 70 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$
Utilization category AC-2 and AC-3					
Rated operational currents I_{e}	$\begin{array}{r} \text { up to } 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 53 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 65 \end{aligned}$	$\begin{aligned} & 185 \\ & 170 \\ & 65 \end{aligned}$
Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 37 \\ & 64 \\ & 81 \\ & 113 \\ & 75 \end{aligned}$	$\begin{aligned} & 50 \\ & 84 \\ & 105 \\ & 146 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 104 \\ & 132 \\ & 167 \\ & 90 \\ & \hline \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$)	A	1100	1300	1480
Power loss per main current path	for $I_{\mathrm{e}} / \mathrm{AC}-3 / 500 \mathrm{~V}$	W	7	9	13
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)					
Rated operational current $I_{\text {e }}$	up to 400 V	A	97	132	160
Rated power for squirrel-cage motors with 50 Hz and 60 Hz	at 400 V	kW	55	75	90
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational current I_{e}	$\begin{array}{r} \text { up to } 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 54 \\ & 48 \\ & 34 \end{aligned}$	$\begin{aligned} & 68 \\ & 57 \\ & 38 \end{aligned}$	$\begin{aligned} & 81 \\ & 65 \\ & 42 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	kW kW kW kW kW	$\begin{aligned} & 16 \\ & 29 \\ & 37 \\ & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 20 \\ & 38 \\ & 47 \\ & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 25 \\ & 45 \\ & 57 \\ & 65 \\ & 60 \end{aligned}$

Utilization category AC-6a
 Switching AC transformers

Rated operational currents I_{e}

- For inrush current $\mathrm{n}=20$
up to 690 V A
- For inrush current $\mathrm{n}=30$ up to 690 V A
Rated power P
- For inrush current $\mathrm{n}=20$

at 230 V	kVA	45	58	58
400 V	kVA	79	102	102
500 V	kVA	99	128	128
690 V	kVA	137	176	176
1000 V	kVA	80	98	117
at 230 V	kVA	35	39	39
400 V	kVA	62	68	68
500 V	kVA	77	118	85
690 V	kVA	107	98	118
1000 V	kVA	80		117

- For inrush current $\mathrm{n}=30$

115	148	148
90	99	99
45	58	58
79	102	102
99	128	128
137	176	176
80	98	117
35	39	39
62	68	68
77	85	85
107	118	118
80	98	117

For deviating inrush current factors x , the power must be recalculated as follows:
$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

Utilization category AC-6b
 Switching low-inductance (low-loss, metallized dielectric) AC capacitors
 Ambient temperature $40^{\circ} \mathrm{C}$

Rated operational current I_{e}
up to $500 \mathrm{~V} \quad \mathrm{~A}$
Rated power for single capacitors or banks
at 230 V

105	125	145
42	50	58
72	86	100
90	108	125
72	86	100

at 230 V	kvar
400 V	kvar
500 V	kvar

${ }^{1)}$ Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see Protection Equipment:
Overload Relays.

3RT10 contactors, 3-pole, 3 ... 250 kW

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 5 . \\ & \text { S6 } \end{aligned}$
Conductor cross-sections of main conductors with box terminal			
Screw terminals Main conductors: (1 or 2 conductors can be connected) with 3RT19 55-4G box terminal (55 kW)			
Front or rear clamping point connected 	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - Ribbon cable conductors (number x width x circumference) - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 16 \ldots 70 \\ & 16 \ldots 70 \\ & 16 \ldots 70 \\ & \text { Min. } 3 \times 9 \times 0.8, \max .6 \times 15.5 \times 0.8 \\ & 6 \ldots 2 / 0 \end{aligned}$
Both clam connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - Ribbon cable conductors (number \times width \times circumference) - AWG conductors, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} mm^{2} mm AWG Nm	Max. $1 \times 50,1 \times 70$ Max. $1 \times 50,1 \times 70$ Max. 2×70 Max. $2 \times(6 \times 15.5 \times 0.8)$ Max. $2 \times 1 / 0$ M10 (hexagon socket, A/F 4) 10 ... 12 ($90 \ldots 110 \mathrm{lb} . \mathrm{in}$)
Screw terminals (1 or 2 conductors can be connected)	Main conductors: with 3RT19 56-4G box terminal		
Front or rear clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - Ribbon cable conductors (number x width x circumference) - AWG conductors, solid or stranded	mm^{2} mm^{2} mm^{2} mm AWG	16 ... 120 16... 120 16 ... 120 Min. $3 \times 9 \times 0.8$, max. $10 \times 15.5 \times 0.8$ 6 ... 250 kcmil
Both clamping poin connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - Ribbon cable conductors (number x width x circumference) - AWG conductors, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} mm^{2} mm AWG Nm	Max. $1 \times 95,1 \times 120$ Max. $1 \times 95,1 \times 120$ Max. 2×120 Max. $2 \times(10 \times 15.5 \times 0.8)$ Max. $2 \times 3 / 0$ M10 (hexagon socket, A/F 4) 10 ... 12 (90 ... $110 \mathrm{lb} . \mathrm{in}$)
Screw terminals	Main conductors: without box terminal/rail connection		
	- Finely stranded with cable lug ${ }^{1)}$ - Stranded with cable lug ${ }^{1)}$ - AWG conductors, solid or stranded - Connecting bar (max. width)	mm^{2} mm^{2} AWG mm	$\begin{aligned} & 16 \ldots 95 \\ & 25 \ldots 120 \\ & 4 \ldots 250 \text { kcmil } \\ & 17 \end{aligned}$
	- Terminal screw - Tightening torque	Nm	$\begin{aligned} & \text { M8 } \times 25 \text { (A/F 13) } \\ & 10 \ldots 14(89 \ldots 124 \mathrm{lb} . \mathrm{in}) \end{aligned}$
	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{2}\right) ; 2 \times(0.75 \ldots 2.5)^{2)} \text { according to IEC } 60947 \text {; } \\ & \operatorname{max.~} 2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5)^{22)} ; 2 \times(0.75 \ldots 2.5)^{2)} \\ & 2 \times(18 \ldots 14) \\ & \text { M3 (PZ 2) } \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \mathrm{lb} . \mathrm{in}) \end{aligned}$
Cage Clamp terminals	Auxiliary conductors: - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG conductors, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(24 \ldots 14) \end{aligned}$

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum outer diameter of the conductor insulation: 3.6 mm .
With conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, Accessories and Spare Parts.

1) When connecting cable lugs to DIN 46235 use 3RT19 56-4EA1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing.
2) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor $\begin{aligned} & \text { Type } \\ & \text { Size }\end{aligned}$		3RT10 64 3RT10 65 S10 S10	$\begin{aligned} & \text { 3RT10 } 66 \\ & \text { S10 } \end{aligned}$
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			
Mechanical endurance	Operating cycles	10 million	
Electrical endurance		1)	
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (degree of pollution 3)	V	1000	
Rated impulse withstand voltage $\boldsymbol{U}_{\mathrm{imp}}$	kV	8	
Safe isolation between the coil and the main contacts according to EN 60947-1, Appendix N	V	690	
Mirror contacts A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with a NO main contact.		Yes, accotding to EN 60947-4-1, Appendix F	
Permissible ambient temperature During operation During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	```-25 ... +60/+55 with AS-Interface -55 ... +80```	
Degree of protection according to EN 60947-1, Appendix C Touch protection according to EN 50274		IP00/open, coil assembly IP20 Finger-safe with cover	
Shock resistance Rectangular pulse Sine pulse	g/ms g / ms	8.5/5 and $4.2 / 10$ $13.4 / 5$ and $6.5 / 10$	
Conductor cross-sections		2)	
Electromagnetic compatibility (EMC)		3)	
Short-circuit protection			
Main circuit Fuse links, gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE			
- Acc. to IEC 60947-4-1/ EN 60947-4-1 - Type of coordination "1" - Type of coordination "2" - Weld-free ${ }^{4)}$	A A A	$\begin{aligned} & 500 \\ & 400 \\ & 250 \end{aligned}$	
Auxiliary circuit			
- Fuse links gL/gG DIAZED 5SB, NEOZED 5SE (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) or miniature circuit breakers with C characteristic (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)	A	10	

1) See endurance of the main contacts on page $3 / 19$.
2) See conductor cross-sections on page $3 / 47$.
3) See Electromagnetic Compatibility (EMC) on page 3/12.
4) Test conditions according to IEC 60947-4-1.

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type			
	Size	3RT10 64	3RT10 65	3RT10 66
Control			S10	S10

Control

Operating range of the solenoid $A C / D C$ (UC)
$0.8 \times U_{\mathrm{S}} \min \ldots 1.1 \times U_{\mathrm{S}}$ max

Power consumption of the solenoid

(when coil is cool and rated range $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$)

- Conventional operating mechanism

- AC operation	Closing at $U_{\mathrm{S} \text { min }}$ Closing at $U_{S \text { max }}$ Closed at $U_{s \text { min }}$ Closed at U_{S} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 490 / 0.9 \\ & 590 / 0.9 \\ & 5.6 / 0.9 \\ & 6.7 / 0.9 \end{aligned}$
- DC operation	Closing at U_{S} min Closing at $U_{s \text { max }}$ Closed at $U_{s \text { min }}$ Closed at U_{S} max	$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 540 \\ & 650 \\ & 6.1 \\ & 7.4 \end{aligned}$
- Solid-state operating mechanism			
- AC operation	Closing at $U_{S \text { min }}$ Closing at U_{s} max Closed at $U_{S \text { min }}$ Closed at U_{s} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 400 / 0.8 \\ & 530 / 0.8 \\ & 4 / 0.5 \\ & 5 / 0.4 \end{aligned}$
- DC operation	Closing at $U_{s \text { min }}$ Closing at U_{S} max Closed at $U_{s \text { min }}$ Closed at U_{S} max	$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 440 \\ & 580 \\ & 3.2 \\ & 3.8 \\ & \hline \end{aligned}$
PLC control input (EN 61131-2/type			$24 \mathrm{VDC} / \leq 30 \mathrm{~mA}$ power consumption, (operating range $17 \ldots 30 \mathrm{~V}$ DC)
Operating times (Total break time = Opening delay + Arcing time) - Conventional operating mechanism			
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 30 \ldots 95 \\ & 40 \ldots 80 \end{aligned}$
- For $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$
- Solid-state operating mechanism, actuated via A1/A2			
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 105 \ldots .145 \\ & 80 \ldots 100 \end{aligned}$
- For $U_{s \text { min }} \ldots U_{s \text { max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 110 \ldots 130 \\ & 80 \ldots 100 \end{aligned}$
- Solid-state operating mechanism, actuated via PLC input			
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 45 \ldots 80 \\ & 80 \ldots 100 \end{aligned}$
- For $U_{\text {S min }} \ldots U_{\text {S max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 50 \ldots 65 \\ & 80 \ldots 100 \end{aligned}$
- Arcing time		ms	10... 15

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 64 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 65 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 66 \\ & \text { S10 } \end{aligned}$
Main circuit					
AC capacity					
Utilization category AC-1 Switching resistive loads					
Rated operational currents I_{e}	at $40^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 275 \\ & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 330 \\ & 300 \\ & 150 \end{aligned}$	
$\begin{aligned} & \text { Rated power for AC loads }{ }^{1} \text {) } \\ & \text { P.f. }=0.95\left(\text { for } 60^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	kW kW kW kW kW	$\begin{aligned} & 94 \\ & 164 \\ & 205 \\ & 283 \\ & 164 \end{aligned}$	$\begin{aligned} & 113 \\ & 197 \\ & 246 \\ & 340 \\ & 246 \end{aligned}$	
Minimum conductor cross-section for loads with I_{e}	at $40^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	
Utilization category AC-2 and AC-3					
Rated operational currents $I_{\text {e }}$	$\begin{array}{r} \text { up to } 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 225 \\ & 225 \\ & 68 \end{aligned}$	$\begin{aligned} & 265 \\ & 265 \\ & 95 \end{aligned}$	$\begin{aligned} & 300 \\ & 280 \\ & 95 \end{aligned}$
Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 73 \\ & 128 \\ & 160 \\ & 223 \\ & 90 \end{aligned}$	$\begin{aligned} & 85 \\ & 151 \\ & 189 \\ & 265 \\ & 132 \end{aligned}$	$\begin{aligned} & 97 \\ & 171 \\ & 215 \\ & 280 \\ & 132 \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$)	A	1800	2400	2400
Power loss per main current path	for $I_{\mathrm{e}} / \mathrm{AC}-3 / 500 \mathrm{~V}$	W	17	18	22
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)					
Rated operational current I_{e}	up to 400 V	A	195	230	280
Rated power for squirrel-cage motors with 50 Hz and 60 Hz	at 400 V	kW	110	132	160
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational currents I_{e}	up to 500 V 690 V 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 96 \\ & 85 \\ & 42 \end{aligned}$	$\begin{aligned} & 117 \\ & 105 \\ & 57 \end{aligned}$	$\begin{aligned} & 125 \\ & 115 \\ & 57 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 30 \\ & 54 \\ & 67 \\ & 82 \\ & 59 \end{aligned}$	$\begin{aligned} & 37 \\ & 66 \\ & 82 \\ & 102 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & 71 \\ & 87 \\ & 112 \\ & 80 \end{aligned}$

Utilization category AC-6a

Switching AC transformers

Rated operational current I_{e}

- For inrush current $\mathrm{n}=20$
- For inrush current $\mathrm{n}=30$

up to 690 V	A	227	265	273
up to 690 V	A	151	182	182
at 230 V	kVA	90	105	109
400 V	kVA	157	183	189
500 V	kVA	196	229	236
690 V	kVA	271	317	326
1000 V	kVA	117	164	164
at 230 V	kVA	60	72	72
400 V	kVA	105	126	126
500 V	kVA	130	158	158
690 V	kVA	180	217	217
1000 V	kVA	117	164	164

Rated power P

- For inrush current $\mathrm{n}=20$
- For inrush current $\mathrm{n}=30$

For deviating inrush current factors x , the power must be recalculated as follows:
$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

Utilization category AC-6b

Switching low-inductance (low-loss, metallized dielectric) AC capacitors

Ambient temperature $40^{\circ} \mathrm{C}$

Rated operational current I_{e}	up to 500 V	A	183	220
Rated power for single capacitors or	at 230 V	kvar	73	88
banks of capacitors (minimum inductance	400 V	kvar	127	152
of $6 \mu \mathrm{H}$ between capacitors connected in	500 V	kvar	159	191
parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and	690 V	kvar	127	152

1) Industrial furnaces and electric heaters with resistance heating, etc.
(increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see Protection Equipment: Overload Relays.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type	3RT10 64	3RT10 65	3RT10 66
	Size	S10	S10	S10

Main circuit
Load rating with DC

Utilization category DC-1
 Switching resistive load ($L R \leq 1 \mathrm{~ms}$)

Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

up to 24 V	A	200	300
60 V	A	200	300
110 V	A	18	33
220 V	A	3.4	3.8
440 V	A	0.8	0.9
600 V	A	0.5	0.6
up to 24 V	A	200	300
60 V	A	200	300
110 V	A	200	300
220 V	A	20	300
440 V	A	3.2	4
600 V	A	1.6	2
up to 24 V	A	200	300
60 V	A	200	300
110 V	A	200	300
220 V	A	200	300
440 V	A	11.5	11
600 V	A	4	5.2

Utilization category DC-3 and DC-5
 Shunt-wound and series-wound motors (L R $\leq 15 \mathrm{~ms}$)
 Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

up to 24 V	A	200	300
60 V	A	7.5	11
110 V	A	2.5	3
220 V	A	0.6	0.6
440 V	A	0.17	0.18
600 V	A	0.12	0.125
up to 24 V	A	200	300
60 V	A	200	300
110 V	A	200	300
220 V	A	2.5	2.5
440 V	A	0.65	0.65
600 V	A	0.37	0.37
up to 24 V	A	200	300
60 V	A	200	300
110 V	A	200	300
220 V	A	200	300
440 V	A	1.4	1.4
600 V	A	0.75	0.75

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

- Contactors without overload relays Dependence of the switching frequency z on the operational

No-load switching frequency current I^{\prime} and operational voltage U^{\prime} :

AC-1
AC-2
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

- Contactors with overload relays (mean value)

2000	2000
800	750
300	250
700	500
130	130
60	60

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum outer diameter of the conductor insulation: 3.6 mm .
With conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, Accessories and Spare Parts.

1) When connecting cable lugs to DIN 46234, the 3RT19 66-4EA1 terminal cover must be used for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more as well as DIN 46235 for conductor cross-sections of $185 \mathrm{~mm}^{2}$ and more to keep the phase clearance.
2) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			

${ }^{1)}$ See endurance of the main contacts on page $3 / 19$.
${ }^{2)}$ See conductor cross-sections on page $3 / 52$.
${ }^{3}$) See Electromagnetic Compatibility (EMC) on page $3 / 12$.
${ }^{4)}$ Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Utilization category AC-6a
 Switching AC transformers

Rated operational current I_{e}

- For inrush current $\mathrm{n}=20$

up to 690 V	A	377	404
up to 690 V	A	251	270
at 230 V	kVA	150	161
400 V	kVA	261	280
500 V	kVA	326	350
690 V	kVA	450	483
1000 V	kVA	311	311
at 230 V	kVA	100	107
400 V	kVA	173	187
500 V	kVA	217	234
690 V	kVA	300	323

1000 V KVA
311
For deviating inrush current factors x , the power must be recalculated as follows: $P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

Utilization category AC-6b

Switching low-inductance (low-loss, metallized dielectric) AC capacitors

Ambient temperature $40^{\circ} \mathrm{C}$

Rated operational current I_{e}	up to 500 V	A	287	407
Rated power for single capacitors or	at 230 V	kvar	114	162
banks of capacitors (minimum	400 V	kvar	199	282
inductance of $6 \mu \mathrm{H}$ between capacitors	500 V	kvar	248	352
connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	690 V	kvar	199	282
and				

and
${ }^{1)}$ Industrial furnaces and electric heaters with resistance heating, etc.
(increased power consumption on heating up taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see Protection Equipment:
Overload Relays.

3RT10 contactors, 3-pole, 3 ... 250 kW

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum outer diameter of the conductor insulation: 3.6 mm .
With conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, Accessories and Spare Parts.

1) When connecting cable lugs according to DIN 46234 for conductor crosssections of $185 \mathrm{~mm}^{2}$ and more and according to DIN 46235 for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more, the 3RT19 66-4EA1 terminal cover must be used more to keep the phase clearance.
2) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT10 } 15 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 16 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 17 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 23 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 25 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 26 \\ & \text { S0 } \end{aligned}$
CSA and UL rated data									
Rated insulation voltage		V AC	600			600			
Uninterrupted current, at $40^{\circ} \mathrm{C}$	Open and enclosed	A	20			35			
Maximum horsepower ratings (CSA and UL approved values)									
Rated power for induction motors with 60 Hz		a 200 V hp 230 V hp 460 V hp 575 V hp	$\begin{aligned} & 1.5 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 15 \\ & 20 \end{aligned}$
Short-circuit protection (contactor or overload relay)	at CLASS RK5 fuse Circuit breakers with overload protection according to UL 489	$\begin{array}{cc} 9 \mathrm{kA} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ 9 & \end{array}$	$\begin{aligned} & \hline 5 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 5 \\ & 100 \\ & 100 \end{aligned}$
Combination motor controllers type E according to UL 508									
	$\text { at } 480 \mathrm{~V}$	Type A kA	$\begin{aligned} & -- \\ & -- \\ & \hline- \end{aligned}$	-- -- --	$\begin{aligned} & -- \\ & -- \\ & \hline- \end{aligned}$	$\begin{aligned} & \text { 3RV10 } 2 \\ & 8 \\ & 65 \end{aligned}$	$\begin{aligned} & 10 \\ & 65 \end{aligned}$	$\begin{aligned} & 16 \\ & 65 \end{aligned}$	$\begin{aligned} & 22 \\ & 65 \end{aligned}$
	at 600 V	Type A kA	$\begin{aligned} & -- \\ & -- \\ & \hline- \end{aligned}$	--	--	$\begin{aligned} & 3 R V 102 \\ & 8 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 25 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 25 \\ & \hline \end{aligned}$
NEMA/EEMAC ratings									
NEMA/EEMAC size		hp	--		0	--			1
Uninterrupted current	Open Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	--		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	--			$\begin{aligned} & 27 \\ & 27 \end{aligned}$
Rated power for induction motors with 60 Hz		$\begin{aligned} & \text { at } 200 \mathrm{~V} \mathrm{hp} \\ & 230 \mathrm{Vhp} \\ & 460 \mathrm{~V} \mathrm{hp} \\ & 575 \mathrm{~V} \text { hp } \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$		$\begin{aligned} & 3 \\ & 3 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	-- -- -- --			$\begin{aligned} & 7.5 \\ & 7.5 \\ & 10 \\ & 10 \end{aligned}$
Overload relays	Type Setting range	A	$\begin{aligned} & \hline 3 R U 1116 \\ & 0.11 \ldots 12 \end{aligned}$			$\begin{aligned} & \text { 3RU112 } \\ & 1.8 \ldots 25 \end{aligned}$			

| Contactor | Type | 3RT10 34 | 3RT10 35 | 3RT10 36 | 3RT10 44 | 3RT10 45 | 3RT10 46 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Size | S2 | S2 | S2 | S3 | S3 | S3 | |

Rated insulation voltage	V AC	600			600		
Uninterrupted current, at $40^{\circ} \mathrm{C}$ Open and enclosed	A	45	55	50	90	105	105

Maximum horsepower ratings
(CSA and UL approved values)

Rated power for induction motors	at 200 Vhp	10	10	15	20	25	30
with 60 Hz	230 V hp	10	15	15	25	30	30
	460 V hp	25	30	40	50	60	75
	575 Vhp	30	40	50	60	75	100
Short-circuit protection (contactor or overload relay)	CLASS RK5 fuse at 600 V kA	$\begin{aligned} & 5 \\ & 125 \end{aligned}$	5	5	$\begin{aligned} & 10 \\ & 250 \end{aligned}$	10 300	$\begin{aligned} & 10 \\ & 350 \end{aligned}$
	Circuit breakers with overload A	125	150	200	250	300	400
	protection according to UL 489						

Combination motor controllers type E according to UL 508

	at 480 V		$\begin{aligned} & \text { Type } \\ & \text { A } \\ & \text { kA } \end{aligned}$	$\begin{aligned} & \text { 3RV10 } 3 \\ & 32 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & \text { 3RV10 } 4 \\ & 63 \\ & 65 \end{aligned}$	$\begin{aligned} & 75 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 65 \end{aligned}$
	at 600 V		$\begin{aligned} & \text { Type } \\ & \text { A } \\ & \text { kA } \end{aligned}$	$\begin{aligned} & \text { 3RV10 } 4 \\ & 32 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { 3RV10 } 4 \\ & 63 \\ & 30 \end{aligned}$	75 30	$\begin{aligned} & 75 \\ & 30 \end{aligned}$
NEMA/EEMAC ratings									
NEMA/EEMAC size			hp	--		2	--		3
Uninterrupted current	Open Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	--		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	--		$\begin{aligned} & 90 \\ & 90 \end{aligned}$
Rated power for induction motors with 60 Hz		$\begin{array}{r} \text { at } 200 \mathrm{Vh} \\ 230 \mathrm{Vh} \\ 460 \mathrm{Vh} \\ 575 \mathrm{Vhp} \end{array}$		-- -- -- --		$\begin{aligned} & 10 \\ & 15 \\ & 25 \\ & 25 \end{aligned}$	-- -- -- --		$\begin{aligned} & 25 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$
Overload relays	Type Setting range		A	$\begin{aligned} & \hline 3 R U 113 \\ & 5.5 \ldots 50 \end{aligned}$			$\begin{aligned} & \hline 3 R U 114 \\ & 18 \ldots 100 \end{aligned}$		

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

[^0]: ${ }^{1)}$ Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).

[^1]: 1) For $I_{\mathrm{e}} / \mathrm{AC}-1=35 \mathrm{~A}\left(60^{\circ} \mathrm{C}\right)$ and the corresponding minimum conductor
[^2]: 1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
