Technical specifications

| Contactor | Type | 3RT12 64 | 3RT12 65 | 3RT12 66 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Size | S10 | S10 | S10 |

General data

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.

Mechanical endurance	Operating cycles	10 million
Electrical endurance		1)
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)	V	1000
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8
Safe isolation between the coil and the main contacts according to EN 60947-1, Appendix N	V	690
Mirror contacts A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with a NO main contact.		Yes, according to EN 60947-4-1, Appendix F
Permissible ambient temperature During operation During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 /+55 \text { with AS-Interface } \\ & -55 \ldots+80 \end{aligned}$
Degree of protection according to EN 60947-1, Appendix C Touch protection according to EN 50274		IP00/open, coil assembly IP20 Finger-safe with cover
Shock resistance Rectangular pulse Sine pulse	g / ms g/ms	8.5/5 and 4.2/10 $13.4 / 5$ and $6.5 / 10$
Conductor cross-sections		2)
Electromagnetic compatibility (EMC)		3)
Short-circuit protection		
Main circuit Fuse links, gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE		
- According to IEC 60 947-4-1/ - Type 1 coordination EN 60947-4-1 - Type 2 coordination	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 400 \end{aligned}$
Auxiliary circuit		
- Fuse links gL/gG DIAZED 5SB, NEOZED 5SE (weld-free protection for $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)	A	10
Or miniature circuit breakers with C characteristic (short-circuit current $I_{\mathrm{k}} 400 \mathrm{~A}$)		

${ }^{1)}$ See endurance of the main contacts on page $3 / 19$.
${ }^{2)}$ See conductor cross-sections on page $3 / 59$.
3) See Electromagnetic Compatibility (EMC) on page $3 / 12$.
4) Test conditions according to IEC 60947-4-1.

Contactor	$\begin{aligned} & \text { Type } \\ & \text { Size } \end{aligned}$		$\begin{aligned} & \text { 3RT12 } 64 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 65 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 66 \\ & \text { S10 } \end{aligned}$	
Control						
Operating range of the solenoid AC/DC (UC)			$0.8 \times U_{S} \min \ldots 1.1 \times U_{S}$ max			
Power consumption of the solenoid (when coil is cool and rated range $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$) - Conventional operating mechanism						
- AC operation	Closing at $U_{S \text { min }}$ Closing at $U_{\text {s max }}$ Closed at $U_{\mathrm{s} \text { min }}$ Closed at U_{S} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 530 / 0.9 \\ & 630 / 0.9 \\ & 6.1 / 0.9 \\ & 7.4 / 0.9 \end{aligned}$			
- DC operation	Closing at $U_{\text {s min }}$ Closing at U_{s} max Closed at $U_{S \text { min }}$ Closed at U_{s} max	$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 580 \\ & 700 \\ & 6.8 \\ & 8.2 \end{aligned}$			
- Solid-state operating mechanism						
- AC operation	Closing at $U_{\text {s min }}$ Closing at U_{s} max Closed at U_{s} min Closed at U_{S} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 420 / 0.8 \\ & 570 / 0.8 \\ & 4.3 / 0.8 \\ & 5.6 / 0.8 \end{aligned}$			
- DC operation	Closing at $U_{\text {s min }}$ Closing at U_{S} max Closed at U_{S} min Closed at $U_{S \text { max }}$	$\begin{aligned} & W \\ & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 460 \\ & 630 \\ & 3.4 \\ & 4.2 \end{aligned}$			
PLC control input (EN 61131-2/type 2)			$24 \mathrm{VDC} / \leq 30 \mathrm{~mA}$ power consumption, (operating range 17			30 V DC)
Operating times (Total break time = Opening delay + Arcing time) - Conventional operating mechanism						
- With $0.8 \times U_{S} \min \ldots 1.1 \times U_{S \text { max }}$	Closing delay Opening delay	ms	$\begin{aligned} & 30 \ldots 95 \\ & 40 \ldots 80 \end{aligned}$			
- For U_{s} min $\ldots U_{\text {s max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$			
- Solid-state operating mechanism, actuated via A1/A2						
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{s \text { max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 105 \ldots 145 \\ & 80 \ldots 100 \end{aligned}$			
- For $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 110 \ldots 130 \\ & 80 \ldots 100 \end{aligned}$			
- Solid-state operating mechanism, actuated via PLC input						
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 45 \ldots 80 \\ & 80 \ldots 100 \end{aligned}$			
- For $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 50 \ldots 65 \\ & 80 \ldots 100 \end{aligned}$			
- Arcing time		ms	$10 . .15$			

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

| | | |
| :--- | :--- | :--- | :--- |
| Contactor | | |

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays No-load switching freq
Dependence of the switching frequency
z^{\prime} on the operational current I^{\prime} and
operational voltage $U^{\prime}:$
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$
Contactors with overload relays (mean value)

1) Industrial furnaces and electric heaters with resistance heating, etc.
increased power consumption on heating up taken into account).

AC-1 h h		
-1	2000	2000
AC-2 h h	800	750
AC-3 h h^{-1}	300	250
AC-4 h^{-1}	250	750
h^{-1}	60	250

[^0]2) According to IEC 60947-4-1.

For rated values for various start-up conditions see Protection Equipment: Overload Relays.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

Contactor	Type Size		$\begin{aligned} & \text { 3RT12 } 6 . \\ & \text { S10 } \end{aligned}$
Main conductor cross-sections			
Screw terminals	Main conductors: with 3RT19 66-4G box terminal		
Front clamping point connected 	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - AWG conductors, solid or stranded - Ribbon cable conductors (number x width x circumference)	mm ${ }^{2}$ mm^{2} mm^{2} AWG mm	$\begin{aligned} & 70 \ldots 240 \\ & 70 \ldots 240 \\ & 95 \ldots 300 \\ & 3 / 0 \ldots 600 \mathrm{kcmil} \\ & \text { Min. } 6 \times 9 \times 0.8, \text { max. } 20 \times 24 \times 0.5 \end{aligned}$
Rear clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - AWG conductors, solid or stranded - Ribbon cable conductors (number \times width \times circumference)	mm^{2} mm^{2} mm^{2} AWG mm	$\begin{aligned} & 120 \ldots 185 \\ & 120 \ldots 185 \\ & 120 \ldots 240 \\ & 250 \ldots 500 \text { kcmil } \\ & \text { Min. } 6 \times 9 \times 0.8, \text { max. } 20 \times 24 \times 0.5 \end{aligned}$
Both clam connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - AWG conductors, solid or stranded - Ribbon cable conductors (number x width x circumference) - Terminal screws - Tightening torque	mm^{2} mm^{2} mm^{2} AWG mm NM	Min. 2×50, max. 2×185 Min. 2×50, max. 2×185 Min. 2×70, max. 2×240 Min. $2 \times 2 / 0$, max. $1 \times 500 \mathrm{kcmil}$ Max. $2 \times(20 \times 24 \times 0.5)$ M12 (hexagon socket, A/F 5) 20 ... 22 (180 ... $195 \mathrm{lb} . \mathrm{in}$)
	Main conductors: without box terminal/rail connection - Finely stranded with cable lug ${ }^{1)}$ - Stranded with cable lug ${ }^{1)}$ - AWG conductors, solid or stranded - Connecting bar (max. width) - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG mm NM	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 2 / 0 \ldots 500 \text { kcmil } \\ & 25 \\ & \text { M12 (hexagon socket, A/F 5) } \\ & 14 \ldots 24 \text { (124 ... } 210 \text { lb.in) } \end{aligned}$
Screw terminals	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded	mm ${ }^{2}$ mm^{2} AWG	$\left.2 \times(0.5 \ldots 1.5)^{2}\right) ; 2 \times(0.75 \ldots 2.5)^{2)}$ according to IEC 60947; max. $2 \times(0.75 \ldots 4)$ $2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)}$ $2 \times(18 \ldots 14)$
	- Terminal screws - Tightening torque	NM	$\begin{aligned} & \text { M3 (PZ 2) } \\ & 0.8 \ldots 1.2 \text { (7 ... } 10.3 \mathrm{lb} . \mathrm{in}) \end{aligned}$

1) When connecting cable lugs according to DIN 46234 for conductor crosssections of $185 \mathrm{~mm}^{2}$ and more and according to DIN 46235 for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more, the 3RT19 66-4EA1 terminal cover must be used more to keep the phase clearance.
2) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

Contactor $\begin{aligned} & \text { Type } \\ & \text { Size }\end{aligned}$		$\begin{aligned} & \text { 3RT12 } 75 \\ & \text { S12 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 76 \\ & \text { S12 } \end{aligned}$
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			
Mechanical endurance	Operating cycles	10 million	
Electrical endurance		1)	
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)	V	1000	
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8	
Safe isolation between the coil and the main contacts according to EN 60947-1, Appendix N	V	690	
Mirror contacts A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with a NO main contact.		Yes, according to EN 60947-4-1,	pendix F
Permissible ambient temperature During operation During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 /+55 \text { with AS-Interface } \\ & -55 \ldots+80 \end{aligned}$	
Degree of protection according to EN 60947-1, Appendix C Touch protection according to EN 50274		IP00/open, coil assembly IP20 Finger-safe with cover	
Shock resistance Rectangular pulse Sine pulse	g/ms g / ms	8.5/5 and 4.2/10 $13.4 / 5$ and $6.5 / 10$	
Conductor cross-sections		2)	
Electromagnetic compatibility (EMC)		3)	
Short-circuit protection			
Main circuit Fuse links, gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE			
- According to IEC 60947-4-1/ - Type of coordination "1" EN 60947-4 •Type of coordination "2" Weld-free ${ }^{4)}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 500 \end{aligned}$	
Auxiliary circuit			
- Fuse links gL/gG DIAZED 5SB, NEOZED 5SE (weld-free protection for $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) Or miniature circuit breakers with C characteristic (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)	A	10	

1) See endurance of the main contacts on page $3 / 19$.
2) See conductor cross-sections on page $3 / 63$.
3) See Electromagnetic Compatibility (EMC) on page 3/12.
4) Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

| Contactor | Type | 3RT12 75 | 3RT12 76 |
| :--- | :--- | :--- | :--- | :--- |
| Control | Size | S12 | S12 |

Operating range of the solenoid $\quad \mathrm{AC} / \mathrm{DC}(\mathrm{UC}) \quad 0.8 \times U_{\mathrm{s} \text { min }} \ldots 1.1 \times U_{\mathrm{s} \text { max }}$

Power consumption of the solenoid
 (when coil is cool and rated range $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$)

- Conventional operating mechanism

- AC operation	Closing at $U_{\text {s min }}$ Closing at U_{s} max Closed at U_{S} min Closed at U_{s} max
- DC operation	Closing at $U_{\text {s min }}$ Closing at U_{S} max Closed at U_{s} min Closed at U_{s} max
- Solid-state operating mechanism	
- AC operation	Closing at U_{s} min Closing at U_{s} max Closed at U_{S} min Closed at U_{S} max
- DC operation	Closing at $U_{s \text { min }}$ Closing at U_{s} max Closed at U_{S} min Closed at U_{S} max

PLC control input (EN 61131-2/type 2)
Operating times
(Total break time $=$ Opening delay + Arcing time)

- Conventional operating mechanism

- With $0.8 \times U_{s} \min \ldots 1.1 \times U_{s \max }$	Closing delay Opening delay	ms	$45 \ldots 100$
- For $U_{s \min } \ldots U_{s} \max$	Closing delay	ms	$50 \ldots 70$
	Opening delay	ms	$70 \ldots 100$

- Solid-state operating mechanism, actuated via A1/A2

- With $0.8 \times U_{\mathrm{s} \text { min }} \ldots 1.1 \times U_{\mathrm{s} \max }$	Closing delay Opening delay
- For $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$	Closing delay

120 ... 150 Opening delay Opening delay
ms $\quad 80 \ldots 100$

- For U_{s} min $\ldots U_{s}$ max

Opening delay

- Solid-state operating mechanism, actuated via PLC input

- With $0.8 \times U_{s} \min \ldots 1.1 \times U_{s} \max$	Closing delay	ms	$60 \ldots 90$
	Opening delay	ms	$80 \ldots 100$
- For $U_{s \min } \ldots U_{\mathrm{s} \max }$	Closing delay	ms	$65 \ldots 80$
- Arcing time	Opening delay	ms	$80 \ldots 100$
Main circuit		ms	$10 \ldots 15$

circuit
AC capacity

Utilization category AC-1

Rated operational currents $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 1000 V at $60^{\circ} \mathrm{C}$ up to 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 610 \\ & 550 \end{aligned}$	
$\begin{aligned} & \text { Rated power for AC loads }{ }^{1} \text {) } \\ & \text { P.f. }=0.95\left(\text { at } 60^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \\ \hline \end{array}$	kW kW kW kW kW	$\begin{aligned} & 208 \\ & 362 \\ & 452 \\ & 624 \\ & 905 \end{aligned}$	
Minimum conductor cross-section for loads with $I_{\text {e }}$	$\begin{aligned} & \text { at } 40^{\circ} \mathrm{C} \\ & \text { at } 60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 185 \\ & 2 \times 185 \end{aligned}$	
Utilization category AC-2 and AC-3				
Rated operational currents $I_{\text {e }}$	up to 1000 V	A	400	500
Rated power for slipring or squirrelcage motors at 50 and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 132 \\ & 231 \\ & 291 \\ & 400 \\ & 578 \end{aligned}$	$\begin{aligned} & 164 \\ & 291 \\ & 363 \\ & 507 \\ & 728 \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$)	A	3200	4000
Power loss per conducting path	at $I_{\mathrm{e}} / \mathrm{AC}-3$	W	21	32

1) Industrial furnaces and electric heaters with resistance heating, etc. increased power consumption on heating up taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see Protection Equipment:
Overload Relays.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

Utilization category AC-6a

Switching AC transformers

Rated operational current I_{e}

- For inrush current $\mathrm{n}=20$	up to 690 V	A	419
- For inrush current $\mathrm{n}=30$	up to 690 V	A	279
Rated power P			
- For inrush current $\mathrm{n}=20$	at 230 V	kVA	167
	400 V	kVA	290
	500 V	kVA	363
	690 V	kVA	501
	1000 V	kVA	726
- For inrush current $\mathrm{n}=30$	at 230 V	kVA	111
	400 V	kVA	193
	500 V	kVA	241
	690 V	kVA	332
	1000 V	kVA	482

For deviating inrush current factors x , the power must be recalculated as follows:
$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$
Utilization category AC-6b
Switching low-inductance (low-loss, metallized dielectric) AC capacitors
Ambient temperature $40^{\circ} \mathrm{C}$

Rated operational currents I_{e}	up to 500 V	A	407
Rated power for single capacitors or banks of capacitors (minimum inductance of $6 \mu \mathrm{H}$ between capacitors connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	kvar kvar kvar kvar	$\begin{aligned} & 162 \\ & 282 \\ & 352 \\ & 282 \end{aligned}$
Switching frequency			
Switching frequency \boldsymbol{z} in operating cycles/hour Contactors without overload relays	No-load switching frequency	h^{-1}	2000
Dependence of the switching frequency z ' on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	$\begin{aligned} & \text { AC-1 } \\ & \text { AC-2 } \\ & \text { AC-3 } \\ & \text { AC-4 } \end{aligned}$	$\begin{aligned} & h^{-1} \\ & h^{-1} \\ & h^{-1} \\ & h^{-1} \end{aligned}$	$\begin{aligned} & 700 \\ & 250 \\ & 750 \\ & 250 \end{aligned}$
Contactors with overload relays (mean value)		h^{-1}	60

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

Contactor	Type		$\begin{aligned} & \text { 3RT12 } 7 . \\ & \text { S12 } \end{aligned}$				
Conductor cross-sections							
Screw terminals	Main conductors: with 3RT19 66-4G box terminal						
Front clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Stranded - AWG conductors, solid or stranded - Ribbon cable conductors (number \times width \times circumference)		$\begin{aligned} & 70 \ldots 240 \\ & 70 \ldots 240 \\ & 95 \ldots 300 \\ & 3 / 0 \ldots 600 \mathrm{kcmil} \\ & \text { Min. } 6 \times 9 \times 0.8, \text { max. } 20 \times 24 \times 0.5 \end{aligned}$				
Rear clamping point connected	- Finely stranded with end sleeve mm^{2} - Finely stranded without end sleeve mm^{2} - Stranded mm^{2} - AWG conductors, solid or stranded AWG - Ribbon cable conductors mm (number \times width \times circumference)		$\begin{aligned} & 120 \ldots 185 \\ & 120 \ldots 185 \\ & 120 \ldots 240 \\ & 250 \ldots 500 \text { kcmil } \\ & \text { Min. } 6 \times 9 \times 0.8 \text {, max. } 20 \times 24 \times 0.5 \end{aligned}$				
Both clamping point connected	- Finely stranded with end sleeve mm^{2} - Finely stranded without end sleeve mm^{2} - Stranded mm^{2} - AWG conductors, solid or stranded AWG - Ribbon cable conductors mm (number x width x circumference)		Min. 2×50, max. 2×185 Min. 2×50, max. 2×185 Min. 2×70, max. 2×240 Min. $2 \times 2 / 0$, max. $2 \times 500 \mathrm{kcmil}$ Max. $2 \times(20 \times 24 \times 0.5)$				
	- Terminal screws - Tightening torque Main conductors: without box terminal/rail connection		M12 (hexagon socket, A/F 5) 20 ... 22 (180 ... $195 \mathrm{lb} . \mathrm{in}$)				
	- Finely stranded with cable lug ${ }^{1)}$ - Stranded with cable lug ${ }^{1)}$ - AWG conductors, solid or stranded - Connecting bar (max. width)	mm^{2} mm^{2} AWG mm	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 2 / 0 \ldots 500 k \\ & 25 \end{aligned}$	il			
	- Terminal screws - Tightening torque		M10 x 30 (hexagon socket, A/F 17) 14 ... 24 (124 ... $240 \mathrm{lb} . i n$)				
Screw terminals	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)} \text { according to IEC } 60947 ; \\ & \operatorname{max.2\times (0.75} \ldots 4) \\ & 2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)} \\ & 2 \times(18 \ldots 14) \end{aligned}$				
1) When connecting cable lugs to 46234 , the 3 RT19 66-4EA1 terminal cover must be used for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more as well as DIN 46235 for conductor cross-sections of $185 \mathrm{~mm}^{2}$ and more to keep the phase clearance.			If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.				
Contactor	Type Size		$\begin{aligned} & \text { 3RT12 } 64 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 65 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 66 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 75 \\ & \text { S12 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 76 \\ & \text { S12 } \end{aligned}$
CSA and UL rated data							
Rated insulation voltage		V AC	600			600	
Uninterrupted current, at $40^{\circ} \mathrm{C}$	Open and enclosed	A	330			540	
Maximum horsepower ratings (CSA and UL approved values)							
Rated power for induction motors with 60 Hz	$\begin{array}{r} \text { at } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \\ \hline \end{array}$	hp hp hp hp	$\begin{aligned} & 60 \\ & 75 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 75 \\ & 100 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 125 \\ & 150 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 500 \\ & \hline \end{aligned}$
Short-circuit protection	CLASS L fuse Circuit breakers according to UL 489	$\begin{aligned} & \text { kA } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 700 \\ & 500 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 800 \\ & 700 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 800 \\ & 900 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 1200 \\ & 1000 \end{aligned}$	$\begin{aligned} & 30 \\ & 1200 \\ & 1200 \end{aligned}$
NEMA/EEMAC ratings	NEMA/EEMAC size	hp	--	--	5	--	6
Uninterrupted current	Open Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	--	---	$\begin{aligned} & 300 \\ & 270 \end{aligned}$	--	$\begin{aligned} & 600 \\ & 540 \end{aligned}$
Rated power for induction motors with 60 Hz	$\begin{array}{r} \text { at } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \end{array}$	hp hp hp hp		--	$\begin{aligned} & 75 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 400 \end{aligned}$
Overload relays	Type		3RB20 66			3RB20 66	

[^0]: increased power consumption on heating up taken into account).

