3RT, 3TB, 3TF Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Technical specifications

Contactor Type			3TF68 and 3TF69
Rated data of the auxiliary contacts			According to IEC 60947-5-1/DIN VDE 0660 Part 200
Rated insulation voltage U_{i} (degree of pollution 3)		V	690
Continuous thermal current $I_{\text {th }}=$ Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-12		A	10
$\begin{aligned} & \text { AC load } \\ & \text { Rated operational current } I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}-14 \\ & \text { for rated operational voltage } U_{\mathrm{e}} \end{aligned}$			
	$\begin{array}{r} 24 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 230 \mathrm{~V} \end{array}$	A A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$
	$\begin{aligned} & 380 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	A A A A A	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \\ & 2.3 \end{aligned}$

DC load Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12$

for rated operational voltage U_{e}

	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.33 \\ & 0.22 \end{aligned}$
Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-13 for rated operational voltage U_{e}			
	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \\ & 1.14 \\ & 0.98 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.13 \\ & 0.07 \end{aligned}$
CSA and UL rated data for the auxiliary contacts			
Rated voltage		V AC, max.	600
Switching capacity			A 600, P 600

3RT, 3TB, 3TF Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Endurance of the auxiliary contacts

The contact endurance for utilization category AC-12 or AC-15/AC-14 depends mainly on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.

Contact erosion indication with 3TF68 and 3TF69 vacuum

contactors

The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base.

3TF68 and 3TF69 contactors at 230 V AC

If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.

Endurance of the main contacts

Contactor Type

3TF68 and 3TF69 contactors
Legend for the diagrams:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3RT, 3TB, 3TF Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Contactor	Type		3TF68
Size			

1) To easily replace the laterally mounted auxiliary switches it is recommended to maintain a minimum distance of 30 mm between the contactors.
2) If mounted at a 90° angle (conducting paths are horizontally above each other), the switching frequency is reduced by 80% compared with the normal values.
3) See endurance of the auxiliary contacts.
4) Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Contactor	$\begin{aligned} & \text { Type } \\ & \text { Size } \end{aligned}$		$\begin{aligned} & \text { 3TF68 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { 3TF69 } \\ & 14 \end{aligned}$
Control				
Magnetic coil operating range			$0.8 \times U_{S \text { min }} \ldots 1.1 \times U_{\text {S }}$ max	
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{s}$)				
- AC operation, $U_{\text {S max }}$	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 1850 / 1 \\ & 49 / 0.15 \end{aligned}$	$\begin{aligned} & 950 / 0.98 \\ & 30.6 / 0.31 \end{aligned}$
- AC operation, $U_{\text {s min }}$	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 1200 / 1 \\ & 13.5 / 0.47 \end{aligned}$	$\begin{aligned} & \text { 600/0.98 } \\ & 12.9 / 0.43 \end{aligned}$
- DC economy circuit ${ }^{11}$	- Closing at 24 V - Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 1010 \\ & 28 \end{aligned}$	$\begin{aligned} & 960 \\ & 20.6 \end{aligned}$
For contactors of type 3TF68/69. .-. Q:				
- AC operation, $U_{\text {s min }}{ }^{2)}$	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 1000 / 0.99 \\ & 11 / 1 \end{aligned}$	$\begin{aligned} & 1150 / 0.99 \\ & 11 / 1 \end{aligned}$
Operating times at $0,8 \ldots 1.1 \times U_{S}$ (Total break time $=$ Opening delay + Arcing time			(Values apply to cold and warm coil)	
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \left.70 \ldots 120(22 \ldots 65)^{3}\right) \\ & 70 \ldots 100 \end{aligned}$	$\begin{aligned} & 80 \ldots 120 \\ & 70 \ldots 80 \end{aligned}$
- DC economy circuit	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 76 \ldots 110 \\ & 50 \end{aligned}$	$\begin{aligned} & 86 \ldots 280 \\ & 19 \ldots 25 \end{aligned}$
- Arcing time		ms	$10 . .15$	10
For contactors of type 3TF68/69.-. \mathbf{Q} :				
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 35 \ldots 90 \\ & 65 \ldots 90 \end{aligned}$	$\begin{aligned} & 45 \ldots 160 \\ & 30 \ldots 80 \end{aligned}$
Operating times at $1.0 \times U_{S}$ (Total break time $=$ Opening delay + Arcing time)				
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & \left.80 \ldots 100(30 \ldots 45)^{3}\right) \\ & 70 \ldots 100 \end{aligned}$	$\begin{aligned} & 85 \ldots 100 \\ & 70 \end{aligned}$
- DC economy circuit	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 80 \ldots 90 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \ldots 125 \\ & 19 \ldots 25 \end{aligned}$
Minimum command duration for closing	Standard Reduced make-time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 120 \\ & 90 \end{aligned}$	120
Minimum interval time between two ON commands		ms	100	300

1) At 24 V DC; for further voltages, deviations of up to $\pm 10 \%$ are possible.
2) Including reversing contactor.
${ }^{3)}$ Values in brackets apply to contactors with reduced operating times.

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| Contactor | | | |

1) Max. permissible rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4=I_{\mathrm{e}} / \mathrm{AC}-3$ up to 500 V , for reduced contact endurance and reduced switching frequency.
2) For deviating inrush current factors x, the power must be recalculated as follows:
$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$.

3RT, 3TB, 3TF Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Contactors $\begin{aligned} & \text { Type } \\ & \text { Size }\end{aligned}$		$\begin{aligned} & \text { 3TF68 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { 3TF69 } \\ & 14 \end{aligned}$
Main circuit			
AC capacity			
Short-time current carrying capacity (5 ... 30 s)			
- CLASS 5 and 10 - CLASS 15 - CLASS 20 - CLASS 25 - CLASS 30	A A A A A	$\begin{aligned} & 630 \\ & 630 \\ & 536 \\ & 479 \\ & 441 \end{aligned}$	$\begin{aligned} & 820 \\ & 662 \\ & 572 \\ & 531 \\ & 500 \end{aligned}$
Thermal current-carrying capacity $10-\mathrm{s}$-current ${ }^{1 \text { 1) }}$	A	5040	7000
Power loss per conducting path at $I_{\mathrm{e}} / \mathrm{AC}-3 / 690 \mathrm{~V}$	W	45	70
Switching frequency			
Switching frequency \mathbf{z} in operating cycles/hour			
- Contactors without overload relays No-load switching frequency AC	1/h	2000	1000
No-load switching frequency DC AC-1 AC-2 AC-3 AC-4	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 1000 \\ & 700 \\ & 200 \\ & 500 \\ & 150 \end{aligned}$	$\begin{aligned} & 1000 \\ & 700 \\ & 200 \\ & 500 \\ & 150 \end{aligned}$
- Contactors with overload relays (mean value)	1/h	15	15

Conductor cross-sections

- Screw terminals

CSA and UL rated data

Rated insulation voltage			V AC	600	600
Uninterrupted current	Open and enclosed		A	630	820
Maximum horsepower ratings (CSA and UL approved values)					
Rated power for induction motors with 60 Hz		$\begin{array}{r} \text { at } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \end{array}$	hp hp hp hp	$\begin{aligned} & 231 \\ & 266 \\ & 530 \\ & 664 \end{aligned}$	$\begin{aligned} & 290 \\ & 350 \\ & 700 \\ & 860 \end{aligned}$
NEMA/EEMAC ratings					
SIZE			hp	6	7
Uninterrupted current	Open Enclosed		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 600 \\ & 540 \end{aligned}$	$\begin{aligned} & 820 \\ & 810 \end{aligned}$
Rated power for induction motors with 60 Hz		$\begin{array}{r} \text { at } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \end{array}$	hp hp hp hp	$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 400 \end{aligned}$	300 600 600
Overload relays	Type Setting range		A	$\begin{aligned} & \text { 3RB12 . } \\ & 200 \ldots 820 \end{aligned}$	

For short-circuit protection with overload relays see Protection Equipment: Overload Relays

1) According to IEC 60947-4-1.
2) See Accessories and Spare Parts.
3) If two different conductor cross-sections are connected at one clamping point, then the two cross-sections must lie within the range quoted. If identical cross-sections are used, this restriction does not apply.
