3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

Technical specifications

Contactor Type
Endurance of the auxiliary contacts
The contact endurance for utilization category
AC-12 or AC-15/AC-14 depends mainly on the
breaking current. It is assumed that the oper-
ating mechanisms are switched randomly,
i.e. not synchronized with the phase angle of
the supply system.
Legend:
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3TF2

3TF2

Endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching inductive AC loads (AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The rated operational current I_{e} complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of at least 200000 operating cycles. If a shorter endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased. If the contacts are used for mixed operation, i.e. if normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
x=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
$X=$ Contact endurance for mixed operation in operating cycles
$A=$ Contact endurance for normal operation
($I_{\mathrm{a}}=I_{\mathrm{e}}$) in operating cycles
$B=$ Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles $C=$ Inching operations as a percentage of total switching operations

Diagram legend:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

Contactor	Type		3TF20/3TF28	3TF22/3TF29
General data				
Permissible mounting position	AC and DC operation		any	
Mechanical endurance	AC operation DC operation Auxiliary switch block	Operating cycles	10 million 30 million 10 million	
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3) - Screw terminal - Flat connector $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ - Solder pin connection		$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & 690 \\ & 500 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 690^{1)} \\ & -- \\ & \hline- \\ & \hline \end{aligned}$
Rated impulse withstand voltage $\boldsymbol{U}_{\mathrm{imp}}$ (degree of pollution 3) - Screw terminal - Flat connector $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ - Solder pin connection		$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 6 \end{aligned}$	$8^{2)}$
Safe isolation between coil and main contacts (according to DIN VDE 0106 Part 101 and A1 [draft 2/89])		V	Up to 300	
Mirror contacts				
A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with a NO main contact.			Yes, this applies to both the basic unit as well as to between the basic unit and the mounted auxiliary switch block according to EN 60947-4-1, Appendix F	Yes, according to EN 60947-4-1 Appendix F SUVA
Permissible ambient temperature ${ }^{3)}$	During operation During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -55 \ldots+80 \end{aligned}$	
Degree of protection according to EN 60947-1 Appendix C			IP00 open IP20 for screw terminal IP40 coil assembly	
Touch protection according to EN 50274			Finger-safe for screw terminal	
Shock resistance				
Without 3TX44 auxiliary switch block				
Rectangular pulse	AC operation DC operation	g / ms g / ms	8.3/5 and 5.2/10 $11.3 / 5$ and $9.2 / 10$	--
Sine pulse	AC operation DC operation	g / ms g / ms	$13 / 5$ and $8 / 10$ $17.4 / 5$ and 12.9/10	--
With 3TX44 auxiliary switch block				
Rectangular pulse	AC operation DC operation	g / ms g / ms	5/5 and 3.6/10 9/5 and 6.9/10	5/5 and 3.6/10 9/5 and $7.3 / 10$
Sine pulse	AC operation DC operation	g / ms g / ms	$7.8 / 5$ and $5.6 / 10$ $13.9 / 5$ and $10.1 / 10$	$7.8 / 5$ and $5.6 / 10$ $14 / 5$ and $11 / 10$
Conductor cross-sections			4)	

Short-circuit protection for contactors without overload relays

Main circuit ${ }^{5)}$

- Fuse links gL/gG

LV HRC 3NA, DIAZED 5SB, NEOZED

According to IEC 60947-4/ 5SE DIN VDE 0660, Part 2

Type of coordination "1":
Type of coordination "2"6)
Type of coordination "2"6) Weld-free
A $\quad 25$

- Miniature circuit breaker with C characteristic

Auxiliary circuit

Short-circuit current $I_{\mathrm{k}} \geq 1 \mathrm{kA}$

- Fuse links gL/gG

DIAZED 5SB, NEOZED 5SE

1) Auxiliary contacts 500 V .
2) Auxiliary contacts 6 kV .
3) Applies to $50 / 60 \mathrm{~Hz}$ coil:

At $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.
${ }^{4)}$ See conductor cross-sections.

Yes, this applies to both the basic Yes, according to EN 60947-4-1 Appendix F SUVA and Appendix F

IP00 open
IP20 for screw terminal IP40 coil assembly
Finger-safe for screw terminal
$8.3 / 5$ and $5.2 / 10$
$11.3 / 5$ and $9.2 / 10$
$13 / 5$ and $8 / 10$
$17.4 / 5$ and $12.9 / 10$

5/5 and 3.6/10 9/5 and $7.3 / 10$
7.8/5 and 5.6/10 $14 / 5$ and $11 / 10$
5) According to excerpt from IEC 60947-4/DIN VDE 0660 Part 102 Type of coordination "1":
Destruction of the contactor and the overload relay is permissible.
The contactor and/or overload relay can be replaced if necessary.
Type of coordination "2":
The overload relay must not suffer any damage. Contact welding on the contactor is permissible, however, if the contacts can be easily separated.
6) A short-circuit current of $I_{\mathrm{q}} \leq 6 \mathrm{kA}$ applies to type of coordination "2".

1) Applies to $50 / 60 \mathrm{~Hz}$ coil:

At $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.
2) The 3 TX4 490-1 J additional load module is recommended for higher residual currents (see Accessories and Spare Parts).
3) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

| Contactor | Type | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3TF2 contactors, 3-pole, 2.2 ... 4 kW

3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

Contactor	Type Size	$\begin{aligned} & \text { 3TF28 } \\ & \text { 3TF29 } \\ & \text { S00 } \end{aligned}$	3TF20 ..-0..., 3TF22 ..-0... SOO	3TF20..$-3 \ldots$, 3TF20......, 3TF20..$-7 \ldots$ S00

Load rating with DC

Utilization category DC-1

Switching resistive loads

(contact endurance 0.1×10^{6} operating cycles; $L / R \leq 1 \mathrm{~ms}$)
Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$)

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

up to 24 V	A	10	16	16
60 V	A	4	6	6
110 V	A	1.5	2	2
$220 / 240 \mathrm{~V}$	A	0.6	1	1
up to 24 V	A	10	16	16
60 V	A	10	6	16
110 V	A	4	2	6
$220 / 240 \mathrm{~V}$	A	1.5	16	2
up to 24 V	A	10	16	16
60 V	A	10	16	16
110 V	A	10	6	16
$220 / 240 \mathrm{~V}$	A	4		6

Utilization category DC-3 and DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)
Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$)

- 1 conducting path	up to 24 V	A	4	6
	60 V	A	1.8	3

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

| - Contactors without overload relays | No-load switching frequency | h^{-1} | 10000 |
| :--- | :--- | :--- | :--- | :--- |
| Dependence of the switching frequency z^{\prime} on the | AC-1 | h^{-1} | 1000 |
| operational current I^{\prime} and operational voltage U': AC-2 | h^{-1} | 500 | |
| $z^{\prime}=z \times\left(I_{\mathrm{e}} / I^{\prime}\right) \times\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} 1 / \mathrm{h}$ | h^{-1} | 1000 | |
| - Contactors with overload relays (mean value) | | h^{-1} | 15 |

- Contactors with overload relays (mean value)

Conductor cross-sections

Screw terminals	Main and auxiliary conductors		
	Solid	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 2.5), 1 \times 4 \\ & 2 \times(20 \ldots 14) \text { AWG, } 1 \times 12 \text { AWG } \end{aligned}$
	Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5), 1 \times 2.5$
	Pin-end connector (DIN 46231)	mm^{2}	$1 \times 1 \ldots 2.5$
Prescribed tightening torque for terminal screws	Terminal screw	Nm	$\begin{aligned} & \text { M3 } \\ & 0.8 \ldots 1.3 \\ & \text { (} 7 \text {... 11 lb.in) } \end{aligned}$
Flat connectors			
When using a plug-in sleeve	6.3... 1	mm^{2}	$0.5 \ldots 1$
Finely stranded	$6.3 \ldots 2.5$	mm^{2}	1... 2.5
Solder pin connection			Only for printed circuit boards

3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

